OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8630–8637

Temperature dependence of impact ionization in InAs

Ian C. Sandall, Jo Shien Ng, Shiyu Xie, Pin Jern Ker, and Chee Hing Tan  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8630-8637 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An Analytical Band Monte Carlo model was used to investigate the temperature dependence of impact ionization in InAs. The model produced an excellent agreement with experimental data for both avalanche gain and excess noise factors at all temperatures modeled. The gain exhibits a positive temperature dependence whilst the excess noise shows a very weak negative dependence. These dependencies were investigated by tracking the location of electrons initiating the ionization events, the distribution of ionization energy and the effect of threshold energy. We concluded that at low electric fields, the positive temperature dependence of avalanche gain can be explained by the negative temperature dependence of the ionization threshold energy. At low temperature most electrons initiating ionization events occupy L valleys due to the increased ionization threshold. As the scattering rates in L valleys are higher than those in Γ valley, a broader distribution of ionization energy was produced leading to a higher fluctuation in the ionization chain and hence the marginally higher excess noise at low temperature.

© 2013 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(160.6000) Materials : Semiconductor materials
(230.5170) Optical devices : Photodiodes
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: January 29, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 18, 2013
Published: April 2, 2013

Ian C. Sandall, Jo Shien Ng, Shiyu Xie, Pin Jern Ker, and Chee Hing Tan, "Temperature dependence of impact ionization in InAs," Opt. Express 21, 8630-8637 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Shimizu, J. Ishii, Y. Kaneko, F. Sakuma, and A. Ono, “State of the arts of the infrared radiation thermometry standards in the middle temperature range at NMIJ,” SICE Annual Conference 1803–1807 (2004).
  2. J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE, Materials for Infrared Detectors, 4454188–197 (2001). [CrossRef]
  3. A. Marshall, C. H. Tan, M. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008). [CrossRef]
  4. A. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010). [CrossRef]
  5. S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012). [CrossRef]
  6. P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011). [CrossRef]
  7. A. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011). [CrossRef]
  8. J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992). [CrossRef]
  9. G. Satyanadh, P. R. Joshi, N. Abedin, and U. Singh, “Monte carlo calculation of electron drift characteristics and avalanche noise in InAs,” J. Appl. Phys.91(3), 1331–1337 (2002). [CrossRef]
  10. W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett.83(14), 2820–2822 (2003). [CrossRef]
  11. D. Harrison, R. A. Abram, and S. Brand, “Characteristics of impact ionization rates in direct and indirect gap semiconductors,” J. Appl. Phys.85(12), 8186–8188 (1999). [CrossRef]
  12. C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2332 (2004). [CrossRef]
  13. C. Jacoboni and L. Reggiani, “Monte Carlo method in transport,” Rev. Mod. Phys.55, 646–703 (1983).
  14. M. V. Fischetti, “Monte carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport,” IEEE Trans. Electron. Dev.38(3), 634–649 (1991). [CrossRef]
  15. S. Krishnamurthy, M. A. Berding, A. Sher, and A. B. Chen, “Ballistic transport in semiconductor alloys,” J. Appl. Phys.63(9), 4540–4547 (1988). [CrossRef]
  16. Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990). [CrossRef]
  17. P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express20(28), 29568–29576 (2012). [CrossRef] [PubMed]
  18. Y. S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, “Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors,” Phys. Rev. B82(20), 205212 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited