OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8638–8651

The theoretical analysis of the hard X-ray block-structure supermirror

Youwei Yao, Hideyo Kunieda, and Zhanshan Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8638-8651 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2609 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analytical study to provide guide lines to design a block structure hard X-ray supermirror. The block structure supermirror is a kind of layered structure consisting of several “blocks” of multilayer of different d-spacing to obtain broad energy bandwidth response. This structure has been widely applied in X-ray telescopes because it is easy to fabricate. To examine the propagation of X-rays in a supermirror structure, further simplified approximation of Kozhevnikov’s theory has been developed. The supermirror structure is described by a structure function. The spectral function of the structure, which is the Laplace transformation of the structure function, turns out to be proportional to the reflectivity profile against X-ray energy. By analyzing the expression of the spectral function, we found the reflectivity of the supermirror could be smooth due to the box-car shaped spectral function if the d-spacing and layer number of each block is arranged with appropriate constraints.

© 2013 OSA

OCIS Codes
(340.6720) X-ray optics : Synchrotron radiation
(340.7470) X-ray optics : X-ray mirrors
(350.1260) Other areas of optics : Astronomical optics
(310.4165) Thin films : Multilayer design
(310.6805) Thin films : Theory and design
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
X-ray Optics

Original Manuscript: February 5, 2013
Revised Manuscript: March 13, 2013
Manuscript Accepted: March 16, 2013
Published: April 2, 2013

Youwei Yao, Hideyo Kunieda, and Zhanshan Wang, "The theoretical analysis of the hard X-ray block-structure supermirror," Opt. Express 21, 8638-8651 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Spiller, Soft X-ray Optics (SPIE, 1994), Chap. 4.
  2. M. C. Weisskopf, H. D. Tananbaum, L. P. Van Speybroeck, and S. L. O'Dell, “Chandra x-ray observatory (CXO): overview,” proc. SPIE4012, 2–16 (2000). [CrossRef]
  3. F. Jansen, D. Lumb, B. Altieri, J. Clavel, M. Ehle, C. Erd, C. Gabriel, M. Guainazzi, P. Gondoin, R. Much, R. Munoz, M. Santos, N. Schartel, D. Texier, and G. Vacanti, “XMM-Newton observatory,” Astron. Astrophys.365(1), L1–L6 (2001). [CrossRef]
  4. A. F. Iyudin, R. Diehl, H. Bloemen, W. Hermsen, G. G. Lichti, D. Morris, J. Ryan, V. Schonfelder, H. Steinle, M. Varendorff, C. Vries, and C. Winkler, “COMPTEL observations of 44Ti gamma-ray line emission from Cas A,” Astron. Astrophys.284, L1–L4 (1994).
  5. S. M. Owens, T. Okajima, Y. Ogasaka, F. Berendse, and P. J. Serlemitsos, “Multilayer coated thin foil mirrors for InFOCuS,” Proc. SPIE4012, 619–625 (2000). [CrossRef]
  6. F. A. Harrison, F. E. Christensen, W. Craig, C. Hailey, W. Baumgartner, C. M. H. Chen, J. Chonko, W. R. Cook, J. Koglin, K. K. Madsen, M. Pivavoroff, S. Boggs, and D. Smith, “Development of the HEFT and NuSTAR focusing telescopes,” ExA20, 131–137 (2005).
  7. H. Kunieda, H. Awaki, A. Furuzawa, Y. Haba, R. Iizuka, K. Ishibashi, T. Miyaza, H. Mori, Y. Namba, Y. Ogasaka, K. Ogi, T. Okajima, Y. Suzuki, K. Tamura, Y. Tawara, K. Uesugi, K. Yamashita, and S. Yamauchi, “Hard X-ray Telescope to be onboard ASTRO-H,” Proc. SPIE7732, 773214, 773214-12 (2010). [CrossRef]
  8. K. D. Joensen, P. Voutov, A. Szentgyorgyi, J. Roll, P. Gorenstein, P. Høghøj, and F. E. Christensen, “Design of grazing-incidence multilayer supermirrors for hard-x-ray reflectors,” Appl. Opt.34(34), 7935–7944 (1995). [CrossRef] [PubMed]
  9. I. V. Kozhevnikov, I. N. Bukreeva, and E. Ziegler, “Design of X-ray supermirrors,” Nucl. Instrum. Methods Phys. Res. A460(2-3), 424–443 (2001). [CrossRef]
  10. X. Cheng, Z. Wang, Z. Zhang, F. Wang, and L. Chen, “Design of X-ray super-mirrors using simulated annealing algorithm,” Opt. Commun.265(1), 197–206 (2006). [CrossRef]
  11. C. Morawe, E. Ziegler, J. C. Peffen, and I. V. Kozhevnikov, “Design and fabrication of depth-graded x-ray multilayers,” Nucl. Instrum. Methods Phys. Res. A493(3), 189–198 (2002). [CrossRef]
  12. H. Jiang, A. Michette, S. Pfauntsch, Z. Wang, J. Zhu, and D. Li, “Determination of the evolution of layer thickness errors and interfacial imperfections in ultrathin sputtered Cr/C multilayers using high-resolution transmission electron microscopy,” Opt. Express19(12), 11815–11824 (2011). [CrossRef] [PubMed]
  13. K. Yamashita, H. Kunieda, Y. Tawara, K. Tamura, Y. Ogasaka, K. Haga, Y. Hidaka, S. Ichimaru, S. Takahashi, A. Gotou, H. Kitou, T. Okajima, Y. Tsusaka, K. Yokoyama, and S. Takeda, “New design concept of multilayer supermirrors for hard x-ray optics,” Proc. SPIE3766, 327–335 (1999). [CrossRef]
  14. K. Yamashita, “Development of Pt/C multilayer supermirrors for hard x-ray optics,” Nucl. Instrum. Methods Phys. Res. A529(1-3), 59–62 (2004). [CrossRef]
  15. Y. Tawara, K. Yamashita, H. Kunieda, K. Tamura, A. Furuzawa, K. Haga, N. Nakajo, T. Okajima, H. Takata, P. J. Serlemitsos, J. Tueller, R. Petre, S. Yang, K. W. Chan, G. S. Lodha, Y. Namba, and J. Yu, “Development of a multilayer supermirror for hard x-ray telescopes,” Proc. SPIE3444, 569–575 (1998). [CrossRef]
  16. I. V. Kozhevnikov and C. Montcalm, “Design of x-ray multilayer mirrors with maximal integral efficiency,” Nucl. Instrum. Methods Phys. Res. A624(1), 192–202 (2010). [CrossRef]
  17. E. Spiller, Soft X-ray Optics (SPIE, 1994), Chap. 7.
  18. E. Spiller, “Characterization of multilayer coating by x-ray reflection,” Rev. Phys. Appl. (Paris)23(10), 1687–1700 (1988). [CrossRef]
  19. A. R. S. Bahai, B. R. Saltzber, and M. Ergen, Multi-Carrier Digital Communications Theory and Applications of OFDM (Sprigner, 2004), Chap. 1.
  20. D. L. Windt, “IMD—software for modeling the optical properties of multilayer films,” Comput. Phys.12(4), 360–370 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited