OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8677–8688

Analysis of the radiation force and torque exerted on a chiral sphere by a Gaussian beam

Qing-Chao Shang, Zhen-Sen Wu, Tan Qu, Zheng-Jun Li, Lu Bai, and Lei Gong  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8677-8688 (2013)
http://dx.doi.org/10.1364/OE.21.008677


View Full Text Article

Enhanced HTML    Acrobat PDF (1113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Under the framework of generalized Lorenz-Mie theory, we calculate the radiation force and torque exerted on a chiral sphere by a Gaussian beam. The theory and codes for axial radiation force are verified when the chiral sphere degenerates into an isotropic sphere. We discuss the influence of a chirality parameter on the radiation force and torque. Linearly and circularly polarized incident Gaussian beams are considered, and the corresponding radiation forces and torques are compared and analyzed. The polarization of the incident beam considerably influences radiation force of a chiral sphere. In trapping a chiral sphere, therefore, the polarization of incident beams should be chosen in accordance with the chirality. Unlike polarization, variation of chirality slightly affects radiation torque, except when the imaginary part of the chirality parameter is considered.

© 2013 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(290.5850) Scattering : Scattering, particles
(160.1585) Materials : Chiral media

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: January 15, 2013
Revised Manuscript: March 10, 2013
Manuscript Accepted: March 15, 2013
Published: April 2, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Qing-Chao Shang, Zhen-Sen Wu, Tan Qu, Zheng-Jun Li, Lu Bai, and Lei Gong, "Analysis of the radiation force and torque exerted on a chiral sphere by a Gaussian beam," Opt. Express 21, 8677-8688 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8677


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin and J. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  4. G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun.21(1), 189–194 (1977). [CrossRef]
  5. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992). [CrossRef] [PubMed]
  6. T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry12(6), 479–485 (1991). [CrossRef] [PubMed]
  7. R. Gussgard, T. Lindmo, and I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B9(10), 1922–1930 (1992). [CrossRef]
  8. W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett.63(6), 715–717 (1993). [CrossRef]
  9. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B14(12), 3323–3333 (1997). [CrossRef]
  10. R. C. Gauthier and S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” J. Opt. Soc. Am. B12(9), 1680–1686 (1995). [CrossRef]
  11. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996). [CrossRef]
  12. G. Gouesbet, B. Maheu, and G. Gréhan, “Scattering of a Gaussian Beam by a Sphere Using a Bromwich Formulation: Case of an arbitrary location,” Particle & Particle Systems Characterization5(1), 1–8 (1988). [CrossRef]
  13. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A5(9), 1427–1443 (1988). [CrossRef]
  14. K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun.108(4-6), 343–354 (1994). [CrossRef]
  15. K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt.35(15), 2702–2710 (1996). [CrossRef] [PubMed]
  16. J. A. Lock, “Calculation of the Radiation Trapping Force for Laser Tweezers by Use of Generalized Lorenz-Mie theory. II. On-Axis Trapping Force,” Appl. Opt.43(12), 2545–2554 (2004). [CrossRef] [PubMed]
  17. J. A. Lock, “Calculation of the Radiation Trapping Force for Laser Tweezers by Use of Generalized Lorenz-Mie theory. I. Localized Model Description of an On-Axis Tightly Focused Laser Beam with Spherical Aberration,” Appl. Opt.43(12), 2532–2544 (2004). [CrossRef] [PubMed]
  18. J. S. Kim and S. S. Lee, “Radiation pressure on a dielectric sphere in a gaussian laser beam,” Opt. Acta (Lond.)29(6), 801–806 (1982). [CrossRef]
  19. J. S. Kim and S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am.73(3), 303–312 (1983). [CrossRef]
  20. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989). [CrossRef]
  21. T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun.142(1-3), 468–471 (2001). [CrossRef]
  22. T. A. Nieminen, V. L. Y. Loke, G. Knöner, and A. Branczyk, “Toolbox for calculation of optical forces and torques,” Piers Online3(3), 338–342 (2007). [CrossRef]
  23. R. Gauthier, “Computation of the optical trapping force using an FDTD based technique,” Opt. Express13(10), 3707–3718 (2005). [CrossRef] [PubMed]
  24. A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A18(8), 1944–1953 (2001). [CrossRef] [PubMed]
  25. Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express19(17), 16044–16057 (2011). [CrossRef] [PubMed]
  26. Z. J. Li, Z. S. Wu, Q. C. Shang, L. Bai, and C. H. Cao, “Calculation of radiation force and torque exerted on a uniaxial anisotropic sphere by an incident Gaussian beam with arbitrary propagation and polarization directions,” Opt. Express20(15), 16421–16435 (2012). [CrossRef]
  27. L. A. Ambrosio and H. E. Hernández-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt.50(22), 4489–4498 (2011). [CrossRef] [PubMed]
  28. L. A. Ambrosio and H. E. Hernández-Figueroa, “Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory,” Biomed. Opt. Express1(5), 1284–1301 (2010). [CrossRef] [PubMed]
  29. D. Guzatov and V. V. Klimov, “Chiral particles in a circularly polarised light field: new effects and applications,” Quantum Electron.41(6), 526–533 (2011). [CrossRef]
  30. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett.29(3), 458–462 (1974). [CrossRef]
  31. Z.-S. Wu, Q.-C. Shang, and Z.-J. Li, “Calculation of electromagnetic scattering by a large chiral sphere,” Appl. Opt.51(27), 6661–6668 (2012). [CrossRef] [PubMed]
  32. D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell's equations,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(1), 1102–1112 (1997). [CrossRef]
  33. A. L. Aden and M. Kerker, “Scattering of electromagnetic wave from concentric sphere,” J. Appl. Phys.22(10), 1242–1246 (1951). [CrossRef]
  34. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1998).
  35. Z. S. Wu and Y. P. Wang, “Electromagnetic scattering for multilayered sphere: Recursive algorithms,” Radio Sci.26(6), 1393–1401 (1991). [CrossRef]
  36. A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt.36(13), 2971–2978 (1997). [CrossRef] [PubMed]
  37. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A19(3), 1177–1179 (1979). [CrossRef]
  38. G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transf.112(1), 1–27 (2011). [CrossRef]
  39. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A11(9), 2516–2525 (1994). [CrossRef]
  40. G. Gouesbet, G. Grehan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt.27(23), 4874–4883 (1988). [CrossRef] [PubMed]
  41. K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral Localized Approximation in Generalized Lorenz-Mie Theory,” Appl. Opt.37(19), 4218–4225 (1998). [CrossRef] [PubMed]
  42. J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A11(9), 2503–2515 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited