OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8736–8745

Degenerate band edge resonances in coupled periodic silicon optical waveguides

Justin R. Burr, Nadav Gutman, C. Martijn de Sterke, Ilya Vitebskiy, and Ronald M. Reano  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8736-8745 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2835 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using full three-dimensional analysis we show that coupled periodic optical waveguides can exhibit a giant slow light resonance associated with a degenerate photonic band edge. We consider the silicon-on-insulator material system for implementation in silicon photonics at optical telecommunications wavelengths. The coupling of the resonance mode with the input light can be controlled continuously by varying the input power ratio and the phase difference between the two input arms. Near unity transmission efficiency through the degenerate band edge structure can be achieved, enabling exploitation of the advantages of the giant slow wave resonance.

© 2013 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: January 11, 2013
Revised Manuscript: March 19, 2013
Manuscript Accepted: March 22, 2013
Published: April 2, 2013

Justin R. Burr, Nadav Gutman, C. Martijn de Sterke, Ilya Vitebskiy, and Ronald M. Reano, "Degenerate band edge resonances in coupled periodic silicon optical waveguides," Opt. Express 21, 8736-8745 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(3), 036619 (2005). [CrossRef] [PubMed]
  2. A. A. Sukhorukov, C. J. Handmer, C. M. de Sterke, and M. J. Steel, “Slow light with flat or offset band edges in few-mode fiber with two gratings,” Opt. Express15(26), 17954–17959 (2007). [CrossRef] [PubMed]
  3. A. Figotin and I. Vitebskiy, “Slow-wave resonance in periodic stacks of anisotropic layers,” Phys. Rev. A76(5), 053839 (2007). [CrossRef]
  4. A. A. Sukhorukov, A. V. Lavrinenko, D. N. Chigrin, D. E. Pelinovsky, and Y. S. Kivshar, “Slow-light dispersion in coupled periodic waveguides,” J. Opt. Soc. Am. B25(12), C65–C74 (2008). [CrossRef]
  5. A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photonics Rev.5(2), 201–213 (2011). [CrossRef]
  6. N. Gutman, C. M. de Sterke, A. Sukhorukov, and L. Botten, “Slow and frozen light in optical waveguides with multiple gratings Degenerate band edges and stationary inflection points,” Phys. Rev. A85(3), 033804 (2012). [CrossRef]
  7. N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Degenerate band edges in optical fiber with multiple grating: efficient coupling to slow light,” Opt. Lett.36(16), 3257–3259 (2011). [CrossRef] [PubMed]
  8. N. Gutman, W. H. Dupree, Y. Sun, A. A. Sukhorukov, and C. M. de Sterke, “Frozen and broadband slow light in coupled periodic nanowire waveguides,” Opt. Express20(4), 3519–3528 (2012). [CrossRef] [PubMed]
  9. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75(4), 1896–1899 (1994). [CrossRef]
  10. S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express19(24), 24055–24060 (2011). [CrossRef] [PubMed]
  11. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010). [CrossRef]
  12. M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: Large tunable group delay with minimal distortion and loss,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics54(2), R1078–R1081 (1996). [CrossRef] [PubMed]
  13. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express13(18), 7145–7159 (2005). [CrossRef] [PubMed]
  14. A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron.14(3), 691–705 (2008). [CrossRef]
  15. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.73(10), 1368–1371 (1994). [CrossRef] [PubMed]
  16. A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J.4(5), 1306–1315 (2012). [CrossRef]
  17. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  18. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express17(6), 4565–4574 (2009). [CrossRef] [PubMed]
  19. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  20. D. Pozar, Microwave Engineering (John Wiley & Sons, 2005).
  21. A. A. Sukhorukov, S. Ha, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Dispersion extraction with near-field measurements in periodic waveguides,” Opt. Express17(5), 3716–3721 (2009). [CrossRef] [PubMed]
  22. J. K. Yang, H. Noh, M. J. Rooks, G. S. Solomon, F. Vollmer, and H. Cao, “Lasing in localized modes of a slow light photonic crystal waveguide,” Appl. Phys. Lett.98(24), 241107 (2011). [CrossRef]
  23. N. Gutman, A. A. Sukhorukov, F. Eilenberger, and C. M. de Sterke, “Bistability suppression and low threshold switching using frozen light at a degenerate band edge waveguide,” Opt. Express20(24), 27363–27368 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited