OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8753–8762

Overdetermined broadband spectroscopic Mueller matrix polarimeter designed by genetic algorithms

Lars Martin Sandvik Aas, Pål Gunnar Ellingsen, Bent Even Fladmark, Paul Anton Letnes, and Morten Kildemo  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8753-8762 (2013)
http://dx.doi.org/10.1364/OE.21.008753


View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports on the design and implementation of a liquid crystal variable retarder based overdetermined spectroscopic Mueller matrix polarimeter, with parallel processing of all wavelengths. The system was designed using a modified version of a recently developed genetic algorithm [Letnes et al. Opt. Express 18, 22, 23095 (2010)]. A generalization of the eigenvalue calibration method is reported that allows the calibration of such overdetermined polarimetric systems. Out of several possible designs, one of the designs was experimentally implemented and calibrated. It is reported that the instrument demonstrated good performance, with a measurement accuracy in the range of 0.1% for the measurement of air.

© 2013 OSA

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 8, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 19, 2013
Published: April 2, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Lars Martin Sandvik Aas, Pål Gunnar Ellingsen, Bent Even Fladmark, Paul Anton Letnes, and Morten Kildemo, "Overdetermined broadband spectroscopic Mueller matrix polarimeter designed by genetic algorithms," Opt. Express 21, 8753-8762 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8753


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. G. Ellingsen, M. B. Lilledahl, L. M. S. Aas, C. d. L. Davies, and M. Kildemo, “Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy,” J. Biomed. Opt.16, 116002 (2011). [CrossRef] [PubMed]
  2. M. H. Smith, P. D. Burke, A. Lompado, E. A. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE3911, 210–216 (2000). [CrossRef]
  3. R. N. Weinreb, S. Shakiba, and L. Zangwill, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol.119, 627–636 (1995). [PubMed]
  4. J. D. Howe, M. A. Miller, R. V. Blumer, T. E. Petty, M. A. Stevens, D. M. Teale, and M. H. Smith, “Polarization sensing for target acquisition and mine detection,” Proc. SPIE4133, 202–213 (2000). [CrossRef]
  5. A. Alvarez-Herrero, V. Martínez-Pillet, J. del Toro Iniesta, and V. Domingo, “The IMaX polarimeter for the solar telescope SUNRISE of the NASA long duration balloon program,” in API’09, (2010), pp. 05002.
  6. R. Azzam and N. Bashara, Ellipsometry and Polarized light (North-Holland, 1977).
  7. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Chichester, England; Hoboken, NJ, 2007). [CrossRef]
  8. H. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005). [CrossRef]
  9. M. Foldyna, A. D. Martino, R. Ossikovski, E. Garcia-Caurel, and C. Licitra, “Characterization of grating structures by Mueller polarimetry in presence of strong depolarization due to finite spot size,” Opt. Commun.282, 735–741 (2009). [CrossRef]
  10. D. Schmidt, A. C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys.105, 113508 (2009). [CrossRef]
  11. L. M. S. Aas, M. Kildemo, Y. Cohin, and E. Søndergård, “Determination of small tilt angles of short gasb nanopillars using uv-visible mueller matrix ellipsometry,” Thin Solid Films (2012). [CrossRef]
  12. I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys.108, 014307 (2010). [CrossRef]
  13. T. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86, 328–376 (2011). [CrossRef]
  14. B. Gallas, K. Robbie, R. Abdeddaïm, G. Guida, J. Yang, J. Rivory, and a. Priou, “Silver square nanospirals mimic optical properties of U-shaped metamaterials.” Opt. Express18, 16335–16344 (2010). [CrossRef] [PubMed]
  15. T. A. Germer, “Polarized light scattering by microroughness and small defects in dielectric layers.” J. Opt. Soc. Am. A18, 1279–1288 (2001). [CrossRef]
  16. T. Germer, “Measurement of roughness of two interfaces of a dielectric film by scattering ellipsometry,” Phys. Rev. Lett.85, 349–352 (2000). [CrossRef] [PubMed]
  17. Ø. Svensen, M. Kildemo, J. Maria, J. J. Stamnes, and O. Frette, “Mueller matrix measurements and modeling pertaining to Spectralon white reflectance standards.” Opt. Express20, 15045–15053 (2012). [CrossRef] [PubMed]
  18. J. M. Bennet, R. Chipman, and R. M. A. Azzam, “Polarized light,” in Handbook of Optics, M. Bass and V. Mahajan, eds. (McGraw-Hill, Inc., 2010), pp. 12.3–16.21.
  19. F. Stabo-Eeg, M. Kildemo, I. Nerbø, and M. Lindgren, “Well-conditioned multiple laser Mueller matrix ellipsometer,” Opt. Eng.47, 073604 (2008). [CrossRef]
  20. E. Compain and B. Drevillon, “Complete high-frequency measurement of Mueller matrices based on a new coupled-phase modulator,” Rev. Sci. Instrum.68, 2671 (1997). [CrossRef]
  21. O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration.” Appl. Optics51, 6805–6817 (2012). [CrossRef]
  22. G. E. Jellison and F. a. Modine, “Two-channel polarization modulation ellipsometer.” Appl. Optics29, 959–974 (1990). [CrossRef]
  23. E. Garcia-Caurel, A. D. Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films455, 120–123 (2004). [CrossRef]
  24. L. Aas, P. Ellingsen, and M. Kildemo, “Near infra-red Mueller matrix imaging system and application to retardance imaging of strain,” Thin Solid Films519, 2737–2741 (2010). [CrossRef]
  25. P. Letnes, I. Nerbø, L. Aas, P. Ellingsen, and M. Kildemo, “Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm,” Opt. Express18, 23095–23103 (2010). [CrossRef] [PubMed]
  26. J. H. Holland, “Genetic algorithms,” Sci. Am.267, 44–50 (1992). [CrossRef]
  27. D. Floreano and C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies (The MIT Press, 2008).
  28. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and mueller-matrix ellipsometers.” Appl. Optics38, 3490–3502 (1999). [CrossRef]
  29. S. B. Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Stat. Sol. (a)205, 743–747 (2008). [CrossRef]
  30. A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications (Springer-Verlag, 2003).
  31. R. Hagen, S. Roch, and B. Silbermann, C* Algebras Numerical Analysis (Marcel Dekker, 2001).
  32. L. Aas, P. Ellingsen, M. Kildemo, and M. Lindgren, “Dynamic Response of a fast near infra-red Mueller matrix ellipsometer,” J. Mod. Opt.57, 1603–1610 (2010). [CrossRef]
  33. C. S. Perone, “Pyevolve,” http://pyevolve.sourceforge.net/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited