OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8799–8807

Directional coupling in long-range dielectric-loaded plasmonic waveguides

Vladimir A. Zenin, Zhanghua Han, Valentyn S. Volkov, Kristjan Leosson, Ilya P. Radko, and Sergey I. Bozhevolnyi  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8799-8807 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Directional couplers (DCs) based on long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) operating at telecom wavelengths are studied both numerically and experimentally. The investigated LR-DLSPPWs are formed by ~1.2-µm-high and 1-µm-wide polymer ridges fabricated atop of 15-nm-thick and 500-nm-wide gold stripes supported by a 288-nm-thick Ormoclear polymer deposited on a low-index (ns ≈1.34) layer of Cytop. DC structures consisting of sine-shaped S-bends (having an offset of ~10 µm over a distance of ~20 µm) and ~100-µm-long parallel LR-DLSPPWs with a center-to-center separation of 2 µm are characterized using scanning near-field microscopy. The experimentally obtained values of the propagation length (~400 µm), S-bend loss (~4 dB) and coupling length (~100 µm) are found in good agreement with the numerical simulations, indicating a significant potential of LR-DLSPPWs for the realization of various plasmonic components.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: February 20, 2013
Revised Manuscript: March 19, 2013
Manuscript Accepted: March 20, 2013
Published: April 2, 2013

Vladimir A. Zenin, Zhanghua Han, Valentyn S. Volkov, Kristjan Leosson, Ilya P. Radko, and Sergey I. Bozhevolnyi, "Directional coupling in long-range dielectric-loaded plasmonic waveguides," Opt. Express 21, 8799-8807 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  5. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006). [CrossRef]
  6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997). [CrossRef] [PubMed]
  7. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  8. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B66(3), 035403 (2002). [CrossRef]
  9. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley & Sons, Inc., 2004).
  10. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron.16(1), 23–32 (2010). [CrossRef]
  11. F. E. Doany, B. G. Lee, C. L. Schow, C. K. Tsang, C. Baks, Y. Kwark, R. John, J. U. Knickerbocker, and J. A. Kash, “Terabit/s-class 24-channel bidirectional optical transceiver module based on TSV Si carrier for board-level interconnects,” in Proceedings of IEEE Conference on Electronic Components and Technology (2010), pp. 58–65. [CrossRef]
  12. A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett.22(12), 926–928 (2010). [CrossRef]
  13. Yu. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  14. G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. I. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures,” IEEE Photon. Technol. Lett.24(5), 374–376 (2012). [CrossRef]
  15. J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zehnder interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express20(15), 16300–16309 (2012). [CrossRef]
  16. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007). [CrossRef]
  17. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009). [CrossRef]
  18. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18(2), 1207–1216 (2010). [CrossRef] [PubMed]
  19. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  20. C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express20(7), 7771–7776 (2012). [CrossRef] [PubMed]
  21. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  22. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010). [CrossRef] [PubMed]
  23. J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol.29(10), 1473–1481 (2011). [CrossRef]
  24. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett.36(21), 4278–4280 (2011). [CrossRef] [PubMed]
  25. H. Micro Resist Technology Gmb, Berlin, Germany, www.microresist.de .
  26. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  27. S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, “Transfer functions in collection scanning near-field optical microscopy,” Opt. Commun.172(1-6), 171–179 (1999). [CrossRef]
  28. I. P. Radko, S. I. Bozhevolnyi, and N. Gregersen, “Transfer function and near-field detection of evanescent waves,” Appl. Opt.45(17), 4054–4061 (2006). [CrossRef] [PubMed]
  29. M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron.11(2), 75–83 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited