OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8815–8820

Generation and dynamics of optical beams with polarization singularities

Filippo Cardano, Ebrahim Karimi, Lorenzo Marrucci, Corrado de Lisio, and Enrico Santamato  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8815-8820 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as “lemon”, “star”, and “spiral”. Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

© 2013 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

Original Manuscript: November 13, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 21, 2012
Published: April 3, 2013

Filippo Cardano, Ebrahim Karimi, Lorenzo Marrucci, Corrado de Lisio, and Enrico Santamato, "Generation and dynamics of optical beams with polarization singularities," Opt. Express 21, 8815-8820 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, “Dislocations in Wave Trains,” Proc. R. Soc. Lond. A336, 165–190 (1974). [CrossRef]
  2. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Optical Vortices and Polarization Singularities,” Prog. Opt.53, 293–363 (2009). [CrossRef]
  3. M. S. Soskin and M. V. Vasnetsov, (Ed. E. Wolf), “Singular optics,” Prog. Opt.42, 219–276 (2001). [CrossRef]
  4. S. Franke-Arnold, L. Allen, and M. J. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev.2, 299–313 (2008). [CrossRef]
  5. J. F. Nye, “Polarization effects in the diffraction of electromagnetic waves: the role of disclinations,” Proc. Roy. Soc. Lond. A387, 105–132 (1983). [CrossRef]
  6. J. F. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc. Roy. Soc. Lond. A389, 279–290 (1983). [CrossRef]
  7. M. R. Dennis, “Polarization singularities in paraxial vector fields: morphology and statistics,” Opt. Commun.213, 201–221 (2002). [CrossRef]
  8. I. Freund, “Polarization flowers,” Opt. Commun.199, 47–63 (2001). [CrossRef]
  9. O. Angelsky, A. Mokhun, I. Mokhun, and M. Soskin, “The relationship between topological characteristics of component vortices and polarization singularities,” Opt. Commun.207, 57–65 (2002). [CrossRef]
  10. M. V. Berry, M. R. Dennis, and R. L. Lee, “Polarization singularities in the clear sky,” New J. Phys.6, 162 (2004). [CrossRef]
  11. M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett.28, 1475–1477 (2003). [CrossRef] [PubMed]
  12. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincare beams,” Opt. Express18, 10777–10785 (2010). [CrossRef] [PubMed]
  13. E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt.51, 2925–2934 (2012). [CrossRef] [PubMed]
  14. P. Kurzynowski, W. A. WoŸniak, M. Zdunek, and M. Borwińska, “Singularities of interference of three waves with different polarization states,” Opt. Express20, 26755–26765 (2012). [CrossRef] [PubMed]
  15. T. A. Fadeyeva, C. N. Alexeyev, P. M. Anischenko, and A. V. Volyar, “Engineering of the space-variant linear polarization of vortex-beams in biaxially induced crystals,” Appl. Opt.51, C224–C230 (2012). [CrossRef] [PubMed]
  16. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett.96, 163905 (2006). [CrossRef] [PubMed]
  17. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt.51, C1–C6 (2012). [CrossRef] [PubMed]
  18. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt.13, 064001 (2011). [CrossRef]
  19. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett.94, 231124 (2009). [CrossRef]
  20. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express19, 4085–4090 (2011). [CrossRef] [PubMed]
  21. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, “Hypergeometric-Gaussian modes,” Opt. Lett.32, 3053–3055 (2007). [CrossRef] [PubMed]
  22. E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Light propagation in a birefringent plate with topological charge,” Opt. Lett.34, 1225–1227 (2009). [CrossRef] [PubMed]
  23. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses,” Phys. Rev. Lett.106, 123901 (2011). [CrossRef] [PubMed]
  24. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun.3, 989 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited