OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8821–8830

Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS2

Oscar D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, and N. Peyghambarian  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8821-8830 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a fiber-based slow light system using a carbon disulfide (CS2) filled integrated liquid-core optical fiber (i-LCOF). Using 1 meter of i-LCOF we were able to delay 18ps pulses up to 34ps; a delay of 188% of the pulse width. This experimental setup serves as a foundation for slow-light experiments in other nonlinear liquids. Numerical simulations of pulse-propagation equations confirmed the observed delay and a simplified method is presented that can be applied to calculate induced delay for non-cw Stokes pulses. The system is all-fiber and compact with delays greater than a pulse width, indicating potential application as an ultrafast controllable delay line for time division multiplexing in multiGb/s telecommunication systems.

© 2013 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(160.4330) Materials : Nonlinear optical materials
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated

ToC Category:
Slow and Fast Light

Original Manuscript: January 30, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 27, 2013
Published: April 3, 2013

Oscar D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, and N. Peyghambarian, "Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS2," Opt. Express 21, 8821-8830 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM Over 165-km SSMF within C- and L-bands,” J. Lightwave Technol.30(10), 1540–1548 (2012). [CrossRef]
  2. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News17(4), 18–23 (2006). [CrossRef]
  3. R. W. Boyd, Nonlinear Optics, 4 ed. (Academic Press, 2008).
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999). [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301(5630), 200–202 (2003). [CrossRef] [PubMed]
  6. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon.2(3), 287–318 (2010). [CrossRef]
  7. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009). [CrossRef] [PubMed]
  8. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express13(1), 82–88 (2005). [CrossRef] [PubMed]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005). [CrossRef] [PubMed]
  10. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett.32(3), 217–219 (2007). [CrossRef] [PubMed]
  11. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express13(16), 6092–6098 (2005). [CrossRef] [PubMed]
  12. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express20(7), 8148–8154 (2012). [CrossRef] [PubMed]
  13. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B12(12), 2467–2474 (1995). [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 4 ed. (Academic Press, 2007).
  15. Y. Xu, X. Chen, and Y. Zhu, “Modeling of micro-diameter-scale liquid core optical fiber filled with various liquids,” Opt. Express16(12), 9205–9212 (2008). [CrossRef] [PubMed]
  16. C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B13(10), 2170–2177 (1996). [CrossRef]
  17. L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics2(8), 474–481 (2008). [CrossRef]
  18. L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).
  19. I. D. Rukhlenko, M. Premaratne, I. L. Garanovich, A. A. Sukhorukov, and G. P. Agrawal, “Analytical study of pulse amplification in silicon Raman amplifiers,” Opt. Express18(17), 18324–18338 (2010). [CrossRef] [PubMed]
  20. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express14(6), 2317–2322 (2006). [CrossRef] [PubMed]
  21. B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol.17(4), 704–715 (1999). [CrossRef]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  23. A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys.94(9), 6167–6174 (2003). [CrossRef]
  24. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express2(11), 1588–1611 (2012). [CrossRef]
  25. G. P. Agrawal, Fiber-Optic Communication Systems, 3 ed. (John Wiley & Sons, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited