OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8897–8903

Silk protein based hybrid photonic-plasmonic crystal

Sunghwan Kim, Alexander N. Mitropoulos, Joshua D. Spitzberg, David L. Kaplan, and Fiorenzo G Omenetto  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8897-8903 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a biocompatible hybrid photonic platform incorporating a 3D silk inverse opal (SIO) crystal and a 2D plasmonic crystal formed on the top surface of the SIO. This hybrid photonic-plasmonic crystal (HPPC) structure simultaneously exhibits both an extraordinary transmission and a pseudo-photonic band-gap in its transmission spectrum. We demonstrate the use of the HPPC as a refractive index (RI) sensor. By performing a multispectral analysis to analyze the RI value, a sensitivity of 200,000 nm·Δ%T/RIU (refractive index unit) is achieved.

© 2013 OSA

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(160.1435) Materials : Biomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: March 4, 2013
Manuscript Accepted: March 21, 2013
Published: April 3, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Sunghwan Kim, Alexander N. Mitropoulos, Joshua D. Spitzberg, David L. Kaplan, and Fiorenzo G Omenetto, "Silk protein based hybrid photonic-plasmonic crystal," Opt. Express 21, 8897-8903 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chem. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003). [CrossRef] [PubMed]
  3. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002). [CrossRef] [PubMed]
  4. S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett.94(13), 133503 (2009). [CrossRef]
  5. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  6. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010). [CrossRef] [PubMed]
  7. Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol.20(6), 602–606 (2002). [CrossRef] [PubMed]
  8. M. Frost and M. E. Meyerhoff, “In vivo chemical sensors: Tracking biocompatibility,” Anal. Chem.78(21), 7370–7377 (2006). [CrossRef] [PubMed]
  9. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008). [CrossRef]
  10. J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012). [CrossRef]
  11. J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010). [CrossRef] [PubMed]
  12. H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010). [CrossRef] [PubMed]
  13. A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics1(8), 468–472 (2007). [CrossRef]
  14. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  15. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater.23(22-23), 2515–2533 (2011). [CrossRef] [PubMed]
  16. L. Landström, D. Brodoceanu, D. Bäuerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express17(2), 761–772 (2009). [CrossRef] [PubMed]
  17. X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010). [CrossRef]
  18. B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: Gold film terminated opals,” Phys. Rev. B82(3), 035119 (2010). [CrossRef]
  19. S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics6(12), 818–823 (2012). [CrossRef]
  20. W. L. Vos, R. Sprik, A. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B53, 16231–16235 (1996).
  21. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  22. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  23. R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002). [CrossRef]
  24. A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc.127(14), 5043–5048 (2005). [CrossRef] [PubMed]
  25. N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett.89(2), 023901 (2006). [CrossRef]
  26. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011). [CrossRef] [PubMed]
  27. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006). [CrossRef] [PubMed]
  28. J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009). [CrossRef]
  29. P. Y. Chung, K. L. Lee, G. Schultz, P. K. Wei, and C. Batichm, “Multispectral refractive index sensing using surface plasmon resonance on gold nanosilts,” MRS Proc. 1253, 1253–K10–26 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited