OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8972–8986

Polarization singularities in superposition of vector beams

Sunil Vyas, Yuichi Kozawa, and Shunichi Sato  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8972-8986 (2013)
http://dx.doi.org/10.1364/OE.21.008972


View Full Text Article

Enhanced HTML    Acrobat PDF (3169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a systematic study of the superposition of two vector Laguerre-Gaussian (LG) beams. Propagation depended field distribution obtained from the superposition of two vector LG beams has many interesting features of intensity and polarization. Characteristic inhomogeneous polarization distribution of the vector LG beam appears in the form of azimuthally modulated intensity and polarization distributions in the superposition of the beams. We found that the array of polarization singular points, whose number depends upon the azimuthal indices of the two beams, evolves during propagation of the field. The position and number of C-points generated in the field were analyzed using Stokes singularity relations. Novel intensity and polarization patterns obtained from the superposition of two vector LG beams may find applications in the field of molecular imaging, optical manipulation, atom optics, and optical lattices.

© 2013 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(260.5430) Physical optics : Polarization
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: February 8, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 19, 2013
Published: April 4, 2013

Citation
Sunil Vyas, Yuichi Kozawa, and Shunichi Sato, "Polarization singularities in superposition of vector beams," Opt. Express 21, 8972-8986 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8972


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1, 1–57 (2009).
  2. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams,” J. Opt. Soc. Am. A15(10), 2705–2711 (1998). [CrossRef]
  3. J. Courtial, “Self-imaging beams and the Gouy effect,” Opt. Commun.151(1-3), 1–4 (1998). [CrossRef]
  4. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express15(14), 8619–8625 (2007). [CrossRef] [PubMed]
  5. T. Ando, N. Matsumoto, Y. Ohtake, Yu. Takiguchi, and T. Inoue, “Structure of optical singularities in coaxial superposition of Laguerre-Gaussian mode,” J. Opt. Soc. Am. A27(12), 2602–2612 (2010). [CrossRef]
  6. S. H. Tao, X.-C. Yuan, J. Lin, and R. E. Burge, “Residue orbital angular momentum in interferenced double vortex beams with unequal topological charges,” Opt. Express14(2), 535–541 (2006). [CrossRef] [PubMed]
  7. S. M. Baumann, D. M. Kalb, L. H. MacMillan, and E. J. Galvez, “Propagation dynamics of optical vortices due to Gouy phase,” Opt. Express17(12), 9818–9827 (2009). [CrossRef] [PubMed]
  8. I. D. Maleev and G. A. Swartzlander., “Composite optical vortices,” J. Opt. Soc. Am. B20(6), 1169–1176 (2003). [CrossRef]
  9. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science296(5570), 1101–1103 (2002). [CrossRef] [PubMed]
  10. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Size selective trapping with optical “cogwheel” tweezers,” Opt. Express12(17), 4129–4135 (2004). [CrossRef] [PubMed]
  11. D. Yang, J. Zhao, T. Zhao, and L. Kong, “Generation of rotating intensity blades by superposing optical vortex beams,” Opt. Commun.284(14), 3597–3600 (2011). [CrossRef]
  12. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001). [CrossRef] [PubMed]
  13. Y. Kozawa and S. Sato, “Focusing property of a double-ring-shaped radially polarized beam,” Opt. Lett.31(6), 820–822 (2006). [CrossRef] [PubMed]
  14. Y. Q. Zhao, Q. Zhan, Y. L. Zhang, and Y. P. Li, “Creation of a three-dimensional optical chain for controllable particle delivery,” Opt. Lett.30(8), 848–850 (2005). [CrossRef] [PubMed]
  15. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008). [CrossRef]
  16. X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun3, 998 (2012). [CrossRef] [PubMed]
  17. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007). [CrossRef]
  18. G. M. Lerman and U. Levy, “Radial polarization interferometer,” Opt. Express17(25), 23234–23246 (2009). [CrossRef] [PubMed]
  19. Y. Kozawa and S. Sato, “Focusing of higher-order radially polarized Laguerre-Gaussian beam,” J. Opt. Soc. Am. A29(11), 2439–2443 (2012). [CrossRef] [PubMed]
  20. I. Freund, “Polarization singularity indices in Gaussian laser beams,” Opt. Commun.201(4-6), 251–270 (2002). [CrossRef]
  21. I. Freund, “Poincaré vortices,” Opt. Lett.26(24), 1996–1998 (2001). [CrossRef] [PubMed]
  22. I. Freund, M. S. Soskin, and A. I. Mokhun, “Elliptic critical points in paraxial optical fields,” Opt. Commun.208(4-6), 223–253 (2002). [CrossRef]
  23. J. V. Hajnal, “Singularities in the transverse field of electromagnetic waves. I Theory,” Proc. R. Soc. Lond. A Math. Phys. Sci.414(1847), 433–446 (1987). [CrossRef]
  24. J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves. II. Observation on the electric field,” Proc. R. Soc. Lond. A Math. Phys. Sci.414(1847), 447–468 (1987). [CrossRef]
  25. J. F. Nye and J. V. Hajnal, “The wave structure of monochromatic electromagnetic radiation,” Proc. R. Soc. Lond. A Math. Phys. Sci.409(1836), 21–36 (1987). [CrossRef]
  26. M. R. Dennis, “Polarization singularities in paraxial vector fields: morphology and statics,” Opt. Commun.213(4-6), 201–221 (2002). [CrossRef]
  27. I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, and I. I. Mokhun, “Stokes singularity relations,” Opt. Lett.27(7), 545–547 (2002). [CrossRef] [PubMed]
  28. A. I. Mokhun, M. S. Soskin, and I. Freund, “Elliptic critical points: C-points, a-lines, and the sign rule,” Opt. Lett.27(12), 995–997 (2002). [CrossRef] [PubMed]
  29. I. Freund, “Polarization flowers,” Opt. Commun.199(1-4), 47–63 (2001). [CrossRef]
  30. T. H. Lu, Y. F. Chen, and K. F. Huang, “Generalized hyperboloid structures of polarization singularities in Laguerre-Gaussian vector fields,” Phys. Rev. A76(6), 063809 (2007). [CrossRef]
  31. Y. Luo and B. Lü, “Composite polarization singularities in superimposed Laguerre-Gaussian beams beyond the paraxial approximation,” J. Opt. Soc. Am. A27(3), 578–584 (2010). [CrossRef] [PubMed]
  32. I. Freund, “Möbius strip and twisted ribbon in intersecting Gauss-Laguerre beams,” Opt. Commun.284(16-17), 3816–3845 (2011). [CrossRef]
  33. P. Kurzynowski, W. A. Woźniak, M. Zdunek, and M. Borwińska, “Singularities of interference of three waves with different polarization states,” Opt. Express20(24), 26755–26765 (2012). [CrossRef] [PubMed]
  34. P. Senthilkumaran, J. Masajada, and S. Sato, “Interferometry with vortices,” Int. J. Opt.2012, 517591 (2012).
  35. K. Yu. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Singular polarimetry: Evolution of polarization singularities in electromagnetic waves propagating in a weakly anisotropic medium,” Opt. Express16(2), 695–709 (2008). [CrossRef] [PubMed]
  36. E. Brasselet and S. Juodkazis, “Intangible pointlike tracers for liquid-crystal-based microsensors,” Phys. Rev. A82(6), 063832 (2010). [CrossRef]
  37. F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, “Stokes parameters in the unfolding of an optical vortex through a birefringent crystal,” Opt. Express14(23), 11402–11411 (2006). [CrossRef] [PubMed]
  38. E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt.51(15), 2925–2934 (2012). [CrossRef] [PubMed]
  39. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express18(10), 10777–10785 (2010). [CrossRef] [PubMed]
  40. M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett.102(3), 033902 (2009). [CrossRef] [PubMed]
  41. O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt.11(5), 054030 (2006). [CrossRef] [PubMed]
  42. Y. F. Chen, T. H. Lu, and K. F. Huang, “Hyperboloid structures formed by polarization singularities in coherent vector fields with longitudinal-transverse coupling,” Phys. Rev. Lett.97(23), 233903 (2006). [CrossRef] [PubMed]
  43. R. W. Schoonover and T. D. Visser, “Polarization singularities of focused, radially polarized fields,” Opt. Express14(12), 5733–5745 (2006). [CrossRef] [PubMed]
  44. G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett.108(19), 190401 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (921 KB)      Quicktime
» Media 2: AVI (1849 KB)      Quicktime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited