OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9005–9010

Surface enhanced infrared spectroscopy with gold strip gratings

Tao Wang, Vu Hoa Nguyen, Andreas Buchenauer, Uwe Schnakenberg, and Thomas Taubner  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 9005-9010 (2013)
http://dx.doi.org/10.1364/OE.21.009005


View Full Text Article

Enhanced HTML    Acrobat PDF (1015 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate surface enhanced infrared absorption (SEIRA) spectroscopy with gold strip gratings made by standard optical lithography. By exciting surface plasmon polaritons on both air-gold and gold-substrate interfaces, the resonance of the 1D gratings is linearly tunable with the grating period. With the field enhancement at the edge of the gold strips, a SEIRA enhancement factor more than 6000 for PMMA molecules is achieved. The strong SEIRA enhancement together with the easy fabrication makes the gold strip grating a promising candidate for SEIRA experiments.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6340) Spectroscopy : Spectroscopy, infrared
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 19, 2013
Revised Manuscript: March 19, 2013
Manuscript Accepted: March 20, 2013
Published: April 4, 2013

Citation
Tao Wang, Vu Hoa Nguyen, Andreas Buchenauer, Uwe Schnakenberg, and Thomas Taubner, "Surface enhanced infrared spectroscopy with gold strip gratings," Opt. Express 21, 9005-9010 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-9005


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. R. Jensen, R. P. V. Duyne, S. A. Johnson, and V. A. Maroni, “Surface-enhanced infrared spectroscopy: A comparison of metal island films with discrete and nondiscrete surface plasmons,” Appl. Spectrosc.54(3), 371–377 (2000). [CrossRef]
  2. R. F. Aroca, D. J. Ross, and C. Domingo, “Surface-enhanced infrared spectroscopy,” Appl. Spectrosc.58(11), 324–338 (2004). [CrossRef] [PubMed]
  3. K. Kneipp and H. Kneipp, “Single molecule Raman scattering,” Appl. Spectrosc.60(12), 322A–334A (2006). [CrossRef] [PubMed]
  4. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  5. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics5(11), 682–687 (2011). [CrossRef]
  6. P. J. Larkin, IR and Raman spectroscopy (Elsevier, 2011).
  7. H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl.46(47), 9040–9044 (2007). [CrossRef] [PubMed]
  8. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008). [CrossRef] [PubMed]
  9. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008). [CrossRef] [PubMed]
  10. E. Cubukcu, S. Zhang, Y. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95(4), 043113 (2009). [CrossRef]
  11. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009). [CrossRef] [PubMed]
  12. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano5(10), 8167–8174 (2011). [CrossRef] [PubMed]
  13. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano6(9), 7998–8006 (2012). [CrossRef] [PubMed]
  14. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012). [CrossRef] [PubMed]
  15. F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Top. Quantum Electron. PP (99), 1 (2012).
  16. H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano7(1), 669–675 (2013). [CrossRef] [PubMed]
  17. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express18(19), 19558–19565 (2010). [CrossRef] [PubMed]
  18. V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express19(12), 11202–11212 (2011). [CrossRef] [PubMed]
  19. J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem.59(1), 179–202 (2008). [CrossRef] [PubMed]
  20. D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett.88(18), 184104 (2006). [CrossRef]
  21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  22. J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Akerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small7(16), 2341–2347 (2011). [CrossRef] [PubMed]
  23. P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat Commun3, 684 (2012). [CrossRef] [PubMed]
  24. J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett.101(19), 193105 (2012). [CrossRef]
  25. F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano6(8), 7326–7332 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited