OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9011–9016

A versatile high resolution objective for imaging quantum gases

L. M. Bennie, P. T. Starkey, M. Jasperse, C. J. Billington, R. P. Anderson, and L. D. Turner  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 9011-9016 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1444 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a high resolution objective lens made entirely from catalog singlets that has a numerical aperture of 0.36. It corrects for aberrations introduced by a glass window and has a long working distance of 35 mm, making it suitable for imaging objects within a vacuum system. This offers simple high resolution imaging for many in the quantum gas community. The objective achieves a resolution of 1.3 μm at the design wavelength of 780 nm, and a diffraction-limited field of view of 360 μm when imaging through a 5 mm thick window. Images of a resolution target and a pinhole show quantitative agreement with the simulated lens performance. The objective is suitable for diffraction-limited monochromatic imaging on the D2 line of all the alkalis by changing only the aperture diameter, retaining numerical apertures above 0.32. The design corrects for window thicknesses of up to 15 mm if the singlet spacings are modified.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.3620) Instrumentation, measurement, and metrology : Lens system design
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Atomic and Molecular Physics

Original Manuscript: February 19, 2013
Revised Manuscript: March 25, 2013
Manuscript Accepted: March 27, 2013
Published: April 4, 2013

L. M. Bennie, P. T. Starkey, M. Jasperse, C. J. Billington, R. P. Anderson, and L. D. Turner, "A versatile high resolution objective for imaging quantum gases," Opt. Express 21, 9011-9016 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Kawaguchi and M. Ueda, “Spinor Bose–Einstein condensates,” Phys. Rep.520, 253–381 (2012). [CrossRef]
  2. E. W. Streed, A. Jechow, B. G. Norton, and D. Kielpinski, “Absorption imaging of a single atom,” Nat. Commun.3, 933 (2012). [CrossRef] [PubMed]
  3. H. Gross, Handbook of Optical Systems (Wiley-VCH, 2005) vol. 1. [CrossRef]
  4. Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007). [CrossRef]
  5. W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature462, 74–77 (2009). [CrossRef] [PubMed]
  6. E. A. Salim, S. C. Caliga, J. B. Pfeiffer, and D. Z. Anderson, “High-resolution imaging and optical control of Bose–Einstein condensates in an atom chip magnetic trap,” arXiv:1208.4897 (2012).
  7. Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, “Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A79, 063631 (2009). [CrossRef]
  8. D. Douillet, E. Rolley, C. Guthmann, and A. Prevost, “An easy-to-build long working distance microscope,” Physica B284–288, 2059–2060 (2000). [CrossRef]
  9. W. Alt, “An objective lens for efficient fluorescence detection of single atoms,” Optik113, 142–144 (2002). [CrossRef]
  10. T. B. Ottenstein, “A new objective for high-resolution imaging of Bose–Einstein condensates,” Diploma thesis, University of Heidelberg (2006).
  11. K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys.3, 556–560 (2007). [CrossRef]
  12. R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009). [CrossRef]
  13. J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom-resolved fluorescence imaging of an atomic Mott insulator,” Nature467, 68–72 (2010). [CrossRef] [PubMed]
  14. B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys.13, 043007 (2011). [CrossRef]
  15. B. P. Anderson and M. A. Kasevich, “Spatial observation of Bose–Einstein condensation of 87Rb in a confining potential,” Phys. Rev. A59, 938–941 (1999). [CrossRef]
  16. The objective can also be modeled using the free software OSLO EDU, which is limited to ten surfaces, because the first surface is flat and need not be included in the model.
  17. H. Gross, Handbook of Optical Systems (Wiley-VCH, 2007) vol. 3.
  18. W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill, 2005).
  19. R. E. Fischer and K. L. Mason, “Spherical aberration – some fascinating observations,” Proc. SPIE0766, 53–60 (1987). [CrossRef]
  20. P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D. Turner, and R. P. Anderson, “A scripted control system for autonomous hardware-timed experiments,” arXiv:1303.0080 [cond-mat.quant-gas].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited