OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9017–9023

Sub-100nm pattern generation by laser direct writing using a confinement layer

Jan-Hendrik Klein-Wiele and Peter Simon  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 9017-9023 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel technique is introduced that dramatically increases the quality and spatial resolution of directly ablated periodic nanostructures on materials. The presented method utilizes a PMMA confinement layer spin coated on the surface of the ablated material reducing the violence and speed of expansion of the molten material. As a result, droplet formation deteriorating the achievable resolution can be completely avoided. Moreover, motion control of the molten material leads to structural details with dimensions well below the irradiation wavelength.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 27, 2013
Revised Manuscript: March 22, 2013
Manuscript Accepted: March 22, 2013
Published: April 4, 2013

Jan-Hendrik Klein-Wiele and Peter Simon, "Sub-100nm pattern generation by laser direct writing using a confinement layer," Opt. Express 21, 9017-9023 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett.87(25), 251914 (2005). [CrossRef]
  2. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett.33(22), 2713–2715 (2008). [CrossRef] [PubMed]
  3. M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys.105(5), 053102 (2009). [CrossRef]
  4. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011). [CrossRef] [PubMed]
  5. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012). [CrossRef] [PubMed]
  6. S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process.59(1), 79–82 (1994). [CrossRef]
  7. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009). [CrossRef]
  8. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73(13), 134108 (2006). [CrossRef]
  9. S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A.104(2), 559–565 (2011). [CrossRef]
  10. E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc.1464, 280–293 (2012). [CrossRef]
  11. P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process.63(5), 505–508 (1996). [CrossRef]
  12. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys.68(2), 775 (1990). [CrossRef]
  13. G. Marowsky, P. Simon, K. Mann, and C. K. Rhodes, Femtosecond Excimer Laser Pulses (Springer Handbook of Lasers and Optics, Träger (Ed.), Springer-Verlag Berlin Heidelberg 2012) 842.
  14. J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003). [CrossRef]
  15. J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited