OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9024–9042

Retrieval chlorophyll-a concentration from coastal waters: three-band semi-analytical algorithms comparison and development

Jun Chen, Xunhua Zhang, and Wenting Quan  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 9024-9042 (2013)
http://dx.doi.org/10.1364/OE.21.009024


View Full Text Article

Enhanced HTML    Acrobat PDF (2737 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: The objectives of this study are to validate the applicability of a three-band algorithm in determining chlorophyll-a in eutrophic coastal waters, and to improve the model using improved three-band algorithm. Evaluated using two independent data sets collected from the West Florida Shelf, the variation three-band model was found to have a superior performance to both the three-band and modified three-band model. Using the variation three-band algorithm decreased 18% and 56% uncertainty, respectively, from the three-band and modified three-band algorithms. The significantly reduced uncertainty in chlorophyll-a estimations is attributed to effective removal of absorption of gelbstoff and suspended solids and backscattering of water molecules.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(200.4560) Optics in computing : Optical data processing
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 12, 2013
Revised Manuscript: March 16, 2013
Manuscript Accepted: March 18, 2013
Published: April 4, 2013

Citation
Jun Chen, Xunhua Zhang, and Wenting Quan, "Retrieval chlorophyll-a concentration from coastal waters: three-band semi-analytical algorithms comparison and development," Opt. Express 21, 9024-9042 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-9024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Richard, J. Could, and A. A. Robert, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ.61(2), 290–301 (1997). [CrossRef]
  2. N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009). [CrossRef]
  3. M. W. Matthews, “A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters,” Int. J. Remote Sens.32(21), 6855–6899 (2011). [CrossRef]
  4. J. Chen and H. Sheng, “An empirical algorithm for hyperspectral remote sensing of chlorophyll-a in turbid waters: a case study on Hyperion sensor,” IEEE Sensor Lett., doi. (2012). [CrossRef]
  5. Z. P. Lee and K. L. Carder, “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance,” Remote Sens. Environ.89(3), 361–368 (2004). [CrossRef]
  6. J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013). [CrossRef] [PubMed]
  7. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt.41(27), 5755–5772 (2002). [CrossRef] [PubMed]
  8. A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008). [CrossRef]
  9. G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005). [CrossRef]
  10. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results,” Appl. Opt.45(15), 3577–3592 (2006). [CrossRef] [PubMed]
  11. J. Chen, X. F. Hu, and W. T. Quan, “A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China,” Water Environ. Res. (2012). [CrossRef]
  12. J. Chen, W. T. Quan, Z. H. Wen, and T. W. Cui, “An improved three-band semi-analytical algorithm in estimating chlorophyll-a concentration in high turbid Yellow River Estuary, ” Environ. Earth SCI. doi. (2013). [CrossRef]
  13. C. E. Binging, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ.112(4), 1702–1711 (2008). [CrossRef]
  14. Y. Oyama, B. Matsushita, T. Fukushima, K. Matsushige, and A. Imai, “Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data,” ISPRS J. Photogramm.64(1), 73–85 (2009). [CrossRef]
  15. D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009). [CrossRef]
  16. V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011). [CrossRef]
  17. P. J. Werdell and S. W. Bailey, The SeaWiFS bio-optical archive and storage system (SeaBASS): current architecture and implementation, Goddard Space Flight Center, Greenbelt, Maryland 20771 (2002).
  18. M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009). [CrossRef]
  19. J. L. Mueller and G. S. Fargion, Ocean optics protocols for satellite ocean color sensor validation, SeaWiFS Technical Report Series, Revision 3 Part II (2002).
  20. L. Gilpin and P. Tett, A methods for analysis of Benthic chlorophyll-a pigment, in: marine biology report (Napier University Press, 2001).
  21. N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments,” Limnol. Oceanogr.39(8), 1985–1992 (1994). [CrossRef]
  22. S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurement of aquatic particles retained on filters,” Limnol. Oceanogr.40(8), 1358–1368 (1995). [CrossRef]
  23. Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt.43(25), 4957–4964 (2004). [CrossRef] [PubMed]
  24. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988). [CrossRef]
  25. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35(24), 4850–4862 (1996). [CrossRef] [PubMed]
  26. C. D. Mobley, Hydrolight 6.0 user's guide, final report, SRI international, Menlo Park, Calif (2012).
  27. A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977). [CrossRef]
  28. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS ocean science team agorithm theoretical basis document: case 2 chlorophyll a, ATBD 19, version 7 (2003).
  29. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005). [CrossRef] [PubMed]
  30. G. Dall'Olmo, A. A. Gitelson, and D. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett.30(18), 1–4 (2003). [CrossRef]
  31. H. R. Gordon, “Radiometric considerations for ocean color remote sensors,” Appl. Opt.29(22), 3228–3236 (1990). [CrossRef] [PubMed]
  32. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. deriving bottom depths and water properties by optimization,” Appl. Opt.38(18), 3831–3843 (1999). [CrossRef] [PubMed]
  33. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
  34. M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).
  35. A. Morel and H. Loisel, “Apparent optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt.37(21), 4765–4776 (1998). [CrossRef] [PubMed]
  36. D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ.81(1), 149–161 (2002). [CrossRef]
  37. T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semi-analytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt.45(31), 8116–8131 (2006). [CrossRef] [PubMed]
  38. T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ.113(11), 2424–2430 (2009). [CrossRef]
  39. F. Gilbes, C. Tomas, J. J. Walsh, and F. E. Muller-Karger, “An episodic chlorophyll plume on the west florida shelf,” Cont. Shelf Res.16(9), 1201–1224 (1996). [CrossRef]
  40. A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ.109(4), 464–472 (2007). [CrossRef]
  41. D. T. Yang, D. L. Pan, X. Y. Zhang, X. F. Zhang, X. Q. He, and S. J. Li, “Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China,” Chin. J. Limnol. Oceanogr.24(4), 428–434 (2006). [CrossRef]
  42. H. R. Gordon and B. A. Franz, “Remote sensing fo ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ.112(5), 2677–2685 (2008). [CrossRef]
  43. R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978). [CrossRef]
  44. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt.41(6), 1035–1050 (2002). [CrossRef] [PubMed]
  45. J. L. Mueller, C. O. Davis, R. A. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and C. R. McClain, “Above-water radiance and remote sensing measurement and analysis protocols,” Ocean Optics Protocols for Satellite Ocean-Color Sensor Validation, vol. Revision 4, III: Radiometric Measurements and Data Analysis Protocols, pp. NASA Tech. Memo (2003).
  46. L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ.435-436, 141–150 (2012). [CrossRef] [PubMed]
  47. W. J. Moses, A. A. Gitelson, S. Berdnikov, V. Saprygin, and V. Povazhnyi, “Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — The Azov Sea case study,” Remote Sens. Environ.121, 118–124 (2012). [CrossRef]
  48. K. Suzuki, M. Kishino, K. Sasaoka, S. Saitoh, and T. Saino, “Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific,” J. Oceanogr.54(5), 517–526 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited