OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9069–9080

Characterization of the transmitted near-infrared wavefront error for the GRAVITY/VLTI Coudé Infrared Adaptive Optics System

Pengqian Yang, Stefan Hippler, Casey P. Deen, Wolfgang Brandner, Yann Clénet, Thomas Henning, Armin Huber, Sarah Kendrew, Rainer Lenzen, Oliver Pfuhl, and Jianqiang Zhu  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 9069-9080 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The adaptive optics system for the second-generation VLT-interferometer (VLTI) instrument GRAVITY consists of a novel cryogenic near-infrared wavefront sensor to be installed at each of the four unit telescopes of the Very Large Telescope (VLT). Feeding the GRAVITY wavefront sensor with light in the 1.4 to 2.4 micrometer band, while suppressing laser light originating from the GRAVITY metrology system, custom-built optical components are required. In this paper, we present the development of a quantitative near-infrared point diffraction interferometric characterization technique, which allows measuring the transmitted wavefront error of the silicon entrance windows of the wavefront sensor cryostat. The technique can be readily applied to quantitative phase measurements in the near-infrared regime. Moreover, by employing a slightly off-axis optical setup, the proposed method can optimize the required spatial resolution and enable real time measurement capabilities. The feasibility of the proposed setup is demonstrated, followed by theoretical analysis and experimental results. Our experimental results show that the phase error repeatability in the nanometer regime can be achieved.

© 2013 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(050.1960) Diffraction and gratings : Diffraction theory
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(110.2650) Imaging systems : Fringe analysis

ToC Category:
Adaptive Optics

Original Manuscript: January 8, 2013
Revised Manuscript: March 3, 2013
Manuscript Accepted: March 4, 2013
Published: April 4, 2013

Pengqian Yang, Stefan Hippler, Casey P. Deen, Wolfgang Brandner, Yann Clénet, Thomas Henning, Armin Huber, Sarah Kendrew, Rainer Lenzen, Oliver Pfuhl, and Jianqiang Zhu, "Characterization of the transmitted near-infrared wavefront error for the GRAVITY/VLTI Coudé Infrared Adaptive Optics System," Opt. Express 21, 9069-9080 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Gillessen, F. Eisenhauer, G. Perrin, W. Brandner, C. Straubmeier, K. Perraut, A. Amorim, M. Schöller, C. Araujo-Hauck, H. Bartko, H. Baumeister, J.-P. Berger, P. Carvas, F. Cassaing, F. Chapron, E. Choquet, Y. Clenet, C. Collin, A. Eckart, P. Fedou, S. Fischer, E. Gendron, R. Genzel, P. Gitton, F. Gonte, A. Gräter, P. Haguenauer, M. Haug, X. Haubois, T. Henning, S. Hippler, R. Hofmann, L. Jocou, S. Kellner, P. Kervella, R. Klein, N. Kudryavtseva, S. Lacour, V. Lapeyrere, W. Laun, P. Lena, R. Lenzen, J. Lima, D. Moratschke, D. Moch, T. Moulin, V. Naranjo, U. Neumann, A. Nolot, T. Paumard, O. Pfuhl, S. Rabien, J. Ramos, J. M. Rees, R.-R. Rohloff, D. Rouan, G. Rousset, A. Sevin, M. Thiel, K. Wagner, M. Wiest, S. Yazici, and D. Ziegler, “GRAVITY: a four-telescope beam combiner instrument for the VLTI,” Proc. SPIE 7734, Optical and Infrared InterferometryII, 77340Y, 77340Y-20 (2010). [CrossRef]
  2. S. Kendrew, S. Hippler, W. Brandner, Y. Clénet, C. Deen, E. Gendron, A. Huber, R. Klein, W. Laun, R. Lenzen, V. Naranjo, U. Neumann, J. Ramos, R.-R. Rohloff, P. Yang, F. Eisenhauer, A. Amorim, K. Perraut, G. Perrin, C. Straubmeier, E. Fedrigo, and M. S. Valles, “GRAVITY Coudé Infrared Adaptive Optics (CIAO) system for the VLT Interferometer,” Proc. SPIE 8446, Ground-based and Airborne Instrumentation for AstronomyIV, 84467W (2012).
  3. S. Hippler, W. Brandner, Y. Clénet, F. Hormuth, E. Gendron, T. Henning, R. Klein, R. Lenzen, D. Meschke, V. Naranjo, U. Neumann, J. R. Ramos, R.-R. Rohloff, and F. Eisenhauer, “Near-infrared wavefront sensing for the VLT interferometer,” Proc. SPIE7015, 701555, 701555-11 (2008). [CrossRef]
  4. Y. Clénet, E. Gendron, G. Rousset, S. Hippler, F. Eisenhauer, S. Gillessen, G. Perrin, A. Amorim, W. Brandner, K. Perraut, and C. Straubmeier, “Dimensioning the Gravity adaptive optics wavefront sensor,” Proc. SPIE 7736, Adaptive Optics SystemsII, 77364A (2010).
  5. S. Rengaswamy, P. Haguenauer, S. Brillant, A. Cortes, J. H. Girard, S. Guisard, J. Paufique, and A. Pino, “Evaluation of performance of the MACAO systems at the VLTI, ” Proc. SPIE 7734, Optical and Infrared Interferometry II773436, 773436 (2010).
  6. H. Bartko, S. Gillessen, S. Rabien, M. Thiel, A. Gräter, M. Haug, S. Kellner, F. Eisenhauer, S. Lacour, C. Straubmeier, J.-P. Berger, L. Jocou, W. Chibani, S. Lüst, D. Moch, O. Pfuhl, W. Fabian, C. Araujo-Hauck, K. Perraut, W. Brandner, G. Perrin, and A. Amorim, “The fringe detection laser metrology for the GRAVITY interferometer at the VLTI, ” Proc. SPIE 7734, Optical and Infrared InterferometryII, 773421, 773421-18 (2010). [CrossRef]
  7. P. Yang, S. Hippler, C. P. Deen, A. Böhm, W. Brandner, T. Henning, A. Huber, S. Kendrew, R. Lenzen, R.-R. Rohloff, C. Araujo-Hauck, O. Pfuhl, Y. Clénet, and J. Zhu, “Optimizing the transmission of the GRAVITY/VLTI near-infrared wavefront senso, ” Proc. SPIE 8445, Optical and Infrared InterferometryIII, 844531, 844531-7 (2012). [CrossRef]
  8. D. Malacara, Optical shop testing, 2nd Ed, (Wiley, 1992).
  9. M. V. R. K. Murty, “A compact lateral shearing interferometer based on the michelson interferometer,” Appl. Opt.9(5), 1146–1148 (1970). [CrossRef] [PubMed]
  10. R. N. Smartt and W. H. Steel, “Theory and application of point diffraction interferometers,” Jpn. J. Appl. Phys.14, 351–356 (1975).
  11. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006). [CrossRef] [PubMed]
  12. D. Wang, Y. Yang, C. Chen, and Y. Zhuo, “Point diffraction interferometer with adjustable fringe contrast for testing spherical surfaces,” Appl. Opt.50(16), 2342–2348 (2011). [CrossRef] [PubMed]
  13. H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett.21(19), 1526–1528 (1996). [CrossRef] [PubMed]
  14. P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, and J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt.38(35), 7252–7263 (1999). [CrossRef] [PubMed]
  15. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett.35(5), 712–714 (2010). [CrossRef] [PubMed]
  16. R. G. Rongli Guo, B. Y. Baoli Yao, P. G. Peng Gao, J. M. Junwei Min, J. Z. Juanjuan Zheng, and T. Y. Tong Ye, “Reflective point-diffraction microscopic interferometer with long-term stability,” Chin. Opt. Lett.9(12), 120002 (2011). [CrossRef]
  17. M. Takeda, H. Ina, and S. Kobayashi, “Fourier transform methods of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72(1), 156–160 (1982). [CrossRef]
  18. D. C. Ghihlia and M. D. Pritt, Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  19. X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, J. P. Guo, and Y. R. Wang, “Wavefront reconstruction and three-dimensional shape measurement by two-step dc-term-suppressed phase-shifted intensities,” Opt. Lett.34(8), 1210–1212 (2009). [CrossRef] [PubMed]
  20. Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, H. Ren, X. Zhang, and S. Liu, “Fractional Gabor transform,” Opt. Lett.22(21), 1583–1585 (1997). [CrossRef] [PubMed]
  21. K. Qian, “Windowed Fourier transform method for demodulation of carrier fringes,” Opt. Eng.43(7), 1472 (2004). [CrossRef]
  22. J. M. Huntley and H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt.32(17), 3047–3052 (1993). [CrossRef] [PubMed]
  23. M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Opt.50(33), 6214–6224 (2011). [CrossRef] [PubMed]
  24. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express17(18), 15585–15591 (2009). [CrossRef] [PubMed]
  25. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express19(3), 1930–1935 (2011). [CrossRef] [PubMed]
  26. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am.66(3), 207–211 (1976). [CrossRef]
  27. J. Herrmann, “Least-squares wave front errors of minimum norm,” J. Opt. Soc. Am.70(1), 28–35 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited