OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9091–9102

2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 9091-9102 (2013)
http://dx.doi.org/10.1364/OE.21.009091


View Full Text Article

Enhanced HTML    Acrobat PDF (1688 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an all-solid-state laser source emitting up to 2.1 W of single-frequency light at 671 nm developed for laser cooling of lithium atoms. It is based on a diode-pumped, neodymium-doped orthovanadate (Nd:YVO4) ring laser operating at 1342 nm. Optimization of the thermal management in the gain medium results in a maximum multi-frequency output power of 2.5 W at the fundamental wavelength. We develop a simple theory for the efficient implementation of intracavity second harmonic generation, and its application to our system allows us to obtain nonlinear conversion efficiencies of up to 88%. Single-mode operation and tuning is established by adding an etalon to the resonator. The second-harmonic wavelength can be tuned over 0.5 nm, and mode-hop-free scanning over more than 6 GHz is demonstrated, corresponding to around ten times the laser cavity free spectral range. The output frequency can be locked with respect to the lithium D-line transitions for atomic physics applications. Furthermore, we observe parametric Kerr-lens mode-locking when detuning the phase-matching temperature sufficiently far from the optimum value.

© 2013 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(020.1335) Atomic and molecular physics : Atom optics
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: January 16, 2013
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 19, 2013
Published: April 4, 2013

Citation
U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, "2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium," Opt. Express 21, 9091-9102 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-9091


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of ultracold atomic Fermi gases,” Rev. Mod. Phys.80, 1215–1274 (2008). [CrossRef]
  2. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys.82, 1225–1286 (2010). [CrossRef]
  3. F. Hou, L. Yu, X. Jia, Y. Zheng, C. Xie, and K. Peng, “Experimental generation of optical non-classical states of light with 1.34 μm wavelength,” Eur. Phys. J. D62, 433–437 (2011). [CrossRef]
  4. F. Camargo, T. Zanon-Willette, T. Badr, N. Wetter, and J. Zondy, “Tunable single-frequency Nd:YVO4 BiB3O6 ring laser at 671 nm,” IEEE J. Quantum Elect.46, 804–809 (2010). [CrossRef]
  5. U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B106, 25–36 (2012). [CrossRef]
  6. D. Fernandes, F. Sievers, N. Kretzschmar, S. Wu, C. Salomon, and F. Chevy, “Sub-doppler laser cooling of fermionic 40K atoms in three-dimensional gray optical molasses,” Europhys. Lett.100, 63001 (2012). [CrossRef]
  7. A. Miffre, M. Jacquey, M. Büchner, G. Trénec, and J. Vigué, “Atom interferometry measurement of the electric polarizability of lithium,” Eur. Phys. J. D38, 353–365 (2006). [CrossRef]
  8. H. Müller, S.-w. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett.100, 180405 (2008). [CrossRef] [PubMed]
  9. I. E. Olivares, A. E. Duarte, E. A. Saravia, and F. J. Duarte, “Lithium isotope separation with tunable diode lasers,” Appl. Opt.41, 2973–2977 (2002). [CrossRef] [PubMed]
  10. S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAIF6 crystals for laser operation,” Appl. Opt.33, 5526 (1994). [CrossRef] [PubMed]
  11. L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm,” Opt. Lett.31, 3297–3299 (2006). [CrossRef] [PubMed]
  12. G. Trénec, W. Volondat, O. Cugat, and J. Vigué, “Permanent magnets for Faraday rotators inspired by the design of the magic sphere,” Appl. Opt.50, 4788–4797 (2011). [CrossRef] [PubMed]
  13. P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Elect.27, 2319–2326 (1991). [CrossRef]
  14. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Elect.33, 1424–1429 (1997). [CrossRef]
  15. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys.34, 2602–2609 (1963). [CrossRef]
  16. E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D.B. Tanner, and D.H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Elect.40, 1500–1510 (2004). [CrossRef]
  17. F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B96, 803–807 (2009). [CrossRef]
  18. R. Polloni and O. Svelto, “Optimum coupling for intracavity second harmonic generation,” Quantum Electronics, IEEE J. Quantum Elect.4, 528–530 (1968). [CrossRef]
  19. R. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Elect.6, 215–223 (1970). [CrossRef]
  20. J. Zondy, F. Camargo, T. Zanon, V. Petrov, and N. Wetter, “Observation of strong cascaded Kerr-lens dynamics in an optimally-coupled cw intracavity frequency-doubled Nd:YLF ring laser,” Opt. Express18, 4796–4815 (2010). [CrossRef] [PubMed]
  21. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys.39, 3597–3639 (1968). [CrossRef]
  22. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett.74, 914–916 (1999). [CrossRef]
  23. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt.42, 6661–6665 (2003). [CrossRef] [PubMed]
  24. M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B73, 663–670 (2001). [CrossRef]
  25. U. Eismann, “A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas,” Ph.D. thesis, Université Pierre et Marie Curie – Paris VI, http://tel.archives-ouvertes.fr/tel-00702865/ (2012).
  26. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Self-suppression of axial mode hopping by intracavity second-harmonic generation,” Opt. Lett.22, 375–377 (1997). [CrossRef] [PubMed]
  27. S. Helmfrid and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B11, 436–445 (1994). [CrossRef]
  28. W. Leeb, “Losses introduced by tilting intracavity etalons,” Appl. Phys. A6, 267–272 (1975).
  29. L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J.-P. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J.-M. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J.-Y. Mandin, S. Massie, S. Mikhailenko, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. imekov, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Ra.110, 533 – 572 (2009). [CrossRef]
  30. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. V. Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17, 28–30 (1992). [CrossRef] [PubMed]
  31. S. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8-ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded kerr lensing in periodically poled KTP,” Opt. Express13, 5270–5278 (2005). [CrossRef] [PubMed]
  32. C. Schäfer, C. Fries, C. Theobald, and J. A. L’huillier, “Parametric Kerr lens mode-locked, 888 nm pumped Nd:YVO4 laser,” Opt. Lett.36, 2674–2676 (2011). [CrossRef] [PubMed]
  33. J. Hastie, S. Calvez, M. Dawson, T. Leinonen, A. Laakso, J. Lyytikinen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express13, 77–81 (2005). [CrossRef] [PubMed]
  34. F. Lenhardt, A. Nebel, R. Knappe, M. Nittmann, J. Bartschke, and J. A. L’huillier, “Efficient single-pass second harmonic generation of a continuous wave Nd:YVO4- laser at 1342 nm using MgO:ppLN,” CLEO2010, CThEE5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited