OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9103–9112

Experimental performance of DWDM quadruple Vernier racetrack resonators

Robert Boeck, Jonas Flueckiger, Lukas Chrostowski, and Nicolas A. F. Jaeger  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 9103-9112 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1328 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that one can meet numerous commercial requirements for filters used in dense wavelength-division multiplexing applications using quadruple Vernier racetrack resonators in the silicon-on-insulator platform. Experimental performance shows a ripple of 0.2 dB, an interstitial peak suppression of 39.7 dB, an adjacent channel isolation of 37.2 dB, an express channel isolation of 10.2 dB, and a free spectral range of 37.52 nm.

© 2013 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: January 28, 2013
Revised Manuscript: March 25, 2013
Manuscript Accepted: March 27, 2013
Published: April 4, 2013

Robert Boeck, Jonas Flueckiger, Lukas Chrostowski, and Nicolas A. F. Jaeger, "Experimental performance of DWDM quadruple Vernier racetrack resonators," Opt. Express 21, 9103-9112 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Schwelb, “The nature of spurious mode suppression in extended FSR microring multiplexers,” Opt. Commun.271, 424–429 (2007). [CrossRef]
  2. O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Micro. Optical Tech. Lett.39, 257–261 (2003). [CrossRef]
  3. Y. Goebuchi, T. Kato, and Y. Kokubun, “Optimum arrangement of high-order series-coupled microring resonator for crosstalk reduction,” Jpn. J. Appl. Phys.45, 5769–5774 (2006). [CrossRef]
  4. D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).
  5. S. Dey and S. Mandal, “Modeling and analysis of quadruple optical ring resonator performance as optical filter using Vernier principle,” Opt. Commun.285, 439–446 (2012). [CrossRef]
  6. C. Chaichuay, P. P. Yupapin, and P. Saeung, “The serially coupled multiple ring resonator filters and Vernier effect,” Opt. Appl.39, 175 (2009).
  7. H. Yan, X. Feng, D. Zhang, and Y. Huang, “Integrated optical add-drop multiplexer based on a compact parent-sub microring-resonator structure,” Opt. Commun.289, 53–59 (2013). [CrossRef]
  8. V. M. N. Passaro, B. Troia, and F. De Leonardis, “A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR,” Sensor. Actuat. B-Chem.168, 402–420 (2012). [CrossRef]
  9. G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng.50, 074601–0746016 (2011). [CrossRef]
  10. F. Boffi, L. Bolla, P. Galli, S. Ghidini, and L. Socci, “Method and device for tunable optical filtering using Vernier effect,” U.S. Patent EP2181348 B1 (2012).
  11. E. J. Klein, “Densely integrated microring-resonator based components for fiber-to-the-home applications,” Ph.D. dissertation, University of Twente (2007).
  12. S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol.13, 1766–1771 (1995). [CrossRef]
  13. S.-J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett.17, 106–108 (2005). [CrossRef]
  14. S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).
  15. T. Chu, N. Fujioka, S. Nakamura, M. Tokushima, and M. Ishizaka, “Compact, low power consumption wavelength tunable laser with silicon photonic-wire waveguide micro-ring resonators,” in 35th European Conference On Optical Communication (ECOC), 1–2 (2009).
  16. P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tunability,” IEEE Photon. Technol. Lett.24, 152–154 (2012). [CrossRef]
  17. W. Fegadolli, G. Vargas, X. Wang, F. Valini, L. Barea, J. Oliveira, N. Frateschi, A. Scherer, V. Almeida, and R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20, 14722–14733 (2012). [CrossRef] [PubMed]
  18. R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the vernier effect: theory and measurement,” Opt. Express18, 25151–25157 (2010). [CrossRef] [PubMed]
  19. R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett.37, 5199–5201 (2012). [CrossRef] [PubMed]
  20. B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009). [CrossRef]
  21. M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011). [CrossRef]
  22. Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20, 1525–1529 (2002). [CrossRef]
  23. Y. Goebuchi, T. Kato, and Y. Kokubun, “Expansion of tuning range of wavelength selective switch using Vernier effect of series coupled microring resonator,” in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005. LEOS 2005, 734–735 (2005).
  24. K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol.9, 728–736 (1991). [CrossRef]
  25. L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun.284, 156–159 (2011). [CrossRef]
  26. J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett.23, 842–844 (2011). [CrossRef]
  27. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express, 18, 22747–22761 (2010). [CrossRef] [PubMed]
  28. X. Jiang, “Silicon nanowire waveguide sensor based on two cascaded ring resonators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS4E.3.
  29. “Single channel DWDM (100 GHz),” Alliance Fiber Optic Products, Inc.
  30. “Optical add/drop multiplexers 100 GHz OADM (1x2),” Photonics-USA.
  31. “Fiber optic dwdm single add/drop device,” AOXC Technologies.
  32. R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.
  33. D. Minoli, Telecommunications Technology Handbook (Artech House, 2003).
  34. “DWDM and CWDM three port device optical parameter definition and test requirements,” Alliance Fiber Optic Products, Inc.
  35. R. S. Romaniuk, “Optical fiber transmission with wavelength multiplexing: faster or denser?,” 5484, 19–28 (2004).
  36. R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011). [CrossRef]
  37. “High isolation OADM (100 GHz),” Alliance Fiber Optic Products, Inc.
  38. C. Manolatou, M. A. Popovic, P. T. Rakich, T. Barwicz, H. A. Haus, and E. P. Ippen, “Spectral anomalies due to coupling-induced frequency shifts in dielectric coupled-resonator filters,” in Optical Fiber Communication Conference, 2004, paper TuD5.
  39. P. Prabhathan, V. M. Murukeshan, and J. Zhang, “Optimal detuning combinations in a series coupled silicon micro ring resonator thermo optic-wavelength selective switch,” Opt. Eng.51, 044604 (2012). [CrossRef]
  40. S. J. Mason, “Feedback theory-further properties of signal flow graphs,” Proc. IRE44, 920–926 (1956). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited