OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9132–9143

Pulse quality analysis on soliton pulse compression and soliton self-frequency shift in a hollow-core photonic bandgap fiber

N. González-Baquedano, I. Torres-Gómez, N. Arzate, A. Ferrando, and D. E. Ceballos-Herrera  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 9132-9143 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7775 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A numerical investigation of low-order soliton evolution in a proposed seven-cell hollow-core photonic bandgap fiber is reported. In the numerical simulation, we analyze the pulse quality evolution in soliton pulse compression and soliton self-frequency shift in three fiber structures with different cross-section sizes. In the simulation, we consider unchirped soliton pulses (of 400 fs) at the wavelength of 1060 nm. Our numerical results show that the seven-cell hollow-core photonic crystal fiber, with a cross-section size reduction of 2%, promotes the pulse quality on the soliton pulse compression and soliton self-frequency shift. For an input soliton pulse of order 3 (which corresponds to an energy of 1.69 μJ), the pulse gets compressed with a factor of up to 5.5 and a quality factor of 0.73, in a distance of 12 cm. It also experiences a soliton-self frequency shift of up to 28 nm, in a propagation length of 6 m, with a pulse shape quality of ≈ 0.80.

© 2013 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Nonlinear Optics

Original Manuscript: January 11, 2013
Revised Manuscript: March 13, 2013
Manuscript Accepted: March 14, 2013
Published: April 5, 2013

N. González-Baquedano, I. Torres-Gómez, N. Arzate, A. Ferrando, and D. E. Ceballos-Herrera, "Pulse quality analysis on soliton pulse compression and soliton self-frequency shift in a hollow-core photonic bandgap fiber," Opt. Express 21, 9132-9143 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, “Photonic crystal fibres,” Nature424, 847–851 (2003). [CrossRef] [PubMed]
  2. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express13, 6153–6159 (2005). [CrossRef] [PubMed]
  3. F. Gérôme, K. Cook, A. K. George, W. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express15, 7126–7131 (2007). [CrossRef] [PubMed]
  4. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003). [CrossRef] [PubMed]
  5. F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express12, 835–840 (2004). [CrossRef] [PubMed]
  6. D. V. Skryabin, “Coupled core-surface solitons in photonics crystal fibers,” Opt. Express12, 4841–4846 (2004). [CrossRef] [PubMed]
  7. J. C. Knight, F. Gérôme, and W. J. Wadsworth, “Hollow-core photonic crystal fibres for delivery and compression of ultrashort optical pulses,” IEEE J. Quantum Electron.39, 1047–1056 (2007). [CrossRef]
  8. J. Lægsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic band gap fibers,” Opt. Express16, 9268–9644 (2008). [CrossRef]
  9. J. Lægsgaard, “Soliton formation in hollow-core photonic bandgap fibers,” Appl. Phys. B95, 2093–3000 (2009). [CrossRef]
  10. M. G. Welch, K. Cook, R. A. Correa, F. Gerome, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulses,” J. Lightwave Technol.27, 1644–1652 (2009). [CrossRef]
  11. A. A. Ivanov, A. A. Podshivalov, and A. M. Zheltikov, “Frequency-shifted megawatt soliton output of a hollow photonic-crystal fiber for time-resolved coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Lett.31, 3318–3320 (2006). [CrossRef] [PubMed]
  12. B-W. Liu, M-L. Hu, X-H. Fang, Y-F. Li, L. Chai, C-Y. Wang, W. Tong, J. Luo, A. A. Voronin, and A. M. Zheltikov, “Stabilized soliton self-frequency shift and 0.1-PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core,” Opt. Express16, 14987–14996 (2008). [CrossRef] [PubMed]
  13. F. Gérome, P. Dupriez, J. Clowes, J. C. Knight, and W. J Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express16, 2381–2386 (2008). [CrossRef] [PubMed]
  14. A. V Gorbach and D. V Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express16, 4858–4865 (2008). [CrossRef] [PubMed]
  15. N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, and C. Milián, “Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section,” Photonics and Nanostructures – Fundamentals and Applications10, 594–601 (2012). [CrossRef]
  16. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express14, 7974–7985 (2006). [CrossRef] [PubMed]
  17. G. P. Agrawal, Non-Linear Fiber Optics (Academic, 2007).
  18. C. J. Hensley, D. G. Ouzounov, and A. L. Gaeta, “Silica-glass contribution to the effective non-linearity of hollow-core photonic band-gap fibers,” Opt. Express15, 3507–3512 (2007). [CrossRef] [PubMed]
  19. J. Lægsgaard, J. Riishede, A. Bjarklev, and N. A. Mortensen, “Material effects in air-guiding photonic band gap fibers,” J. Opt. Soc. Am. B20, 2046–2051 (2003). [CrossRef]
  20. N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).
  21. F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers (Springer, 2007).
  22. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  23. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, “Optimal compression of multi-soliton pulses in optical fibers,” Sov. Tech. Phys. Lett.12, 311–313 (1986).
  24. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  25. K-T. Chai and W-H. Cao, “Enhanced compression of fundamentals solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun.184, 463–474 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited