OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9144–9155

Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

Andrei Andryieuski and Andrei V. Lavrinenko  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 9144-9155 (2013)
http://dx.doi.org/10.1364/OE.21.009144


View Full Text Article

Enhanced HTML    Acrobat PDF (3019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers.

© 2013 OSA

OCIS Codes
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Metamaterials

History
Original Manuscript: January 16, 2013
Revised Manuscript: March 11, 2013
Manuscript Accepted: March 26, 2013
Published: April 5, 2013

Citation
Andrei Andryieuski and Andrei V. Lavrinenko, "Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach," Opt. Express 21, 9144-9155 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-9144


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107, 111101 (2010). [CrossRef]
  2. P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser & Photonics Rev.5, 124–166 (2011). [CrossRef]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nature (London)1, 97–105 (2007).
  4. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008). [CrossRef]
  5. A. Geim, “Graphene: status and prospects.” Science324, 1530–1534 (2009). [CrossRef] [PubMed]
  6. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene.” Nature (London)490, 192–200 (2012). [CrossRef]
  7. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons.” Nature (London)487, 77–81 (2012).
  8. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging.” Nature (London)487, 82–85 (2012).
  9. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics487, 749–758 (2012). [CrossRef]
  10. A. Hill, S. A. Mikhailov, and K. Ziegler, “Dielectric function and plasmons in graphene,” Europhysics Lett.87, 27005 (2009). [CrossRef]
  11. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009). [CrossRef]
  12. F. H. L. Koppens, D. E. Chang, and F. J. G. De Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011). [CrossRef] [PubMed]
  13. S. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett.99, 016803 (2007). [CrossRef] [PubMed]
  14. A. Vakil and N. Engheta, “Transformation optics using graphene.” Science332, 1291–1294 (2011). [CrossRef] [PubMed]
  15. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices.” ACS Nano6, 3677–3694 (2012). [CrossRef] [PubMed]
  16. T. Otsuji, S. A. Boubanga Tombet, A. Satou, H. Fukidome, M. Suemitsu, E. Sano, V. Popov, M. Ryzhii, and V. Ryzhii, “Graphene-based devices in terahertz science and technology,” J. Phys. D45, 303001 (2012). [CrossRef]
  17. B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. (Grace) Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett.99, 113104 (2011). [CrossRef]
  18. B. Sensale-Rodriguez, R. Yan, and M. Kelly, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nature Comm.3, 780–787 (2012). [CrossRef]
  19. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials.” Nature Mat.11, 936–941 (2012). [CrossRef]
  20. A. Andryieuski, A. Lavrinenko, and D. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86, 121108(R) (2012). [CrossRef]
  21. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon meta-material,” Opt. Express20, 28017–28024 (2012). [CrossRef] [PubMed]
  22. A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B86, 195408 (2012). [CrossRef]
  23. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks.” Nature Nanotech.7, 330–334 (2012). [CrossRef]
  24. B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett.12, 4518–4522 (2012). [CrossRef] [PubMed]
  25. A. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B85, 081405 (2012). [CrossRef]
  26. A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett.101, 151119 (2012). [CrossRef]
  27. S. Thongrattanasiri, F. Koppens, and F. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012). [CrossRef] [PubMed]
  28. N. J. Cronin, Microwave and Optical Waveguides (Taylor & Francis, 1995).
  29. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House Publishers, 2003).
  30. J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping.” Nano Lett.12, 5074–5081 (2012). [CrossRef] [PubMed]
  31. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Comm.152, 1341–1349 (2012). [CrossRef]
  32. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett.12, 3711–3715 (2012). [CrossRef] [PubMed]
  33. G. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas and Propagation, 56, 747–757 (2008). [CrossRef]
  34. I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostr. Fundam. Appl.10, 353–358 (2012). [CrossRef]
  35. P. Tassin, T. Koschny, and C. M. Soukoulis, “Effective material parameter retrieval for thin sheets: theory and application to graphene, thin silver films, and single-layer metamaterials,” Physica B: Condensed Matter407, 4062–4065 (2012). [CrossRef]
  36. CST Computer Simulation Technology AG, http://cst.com .
  37. P. D. Cunningham, N. N. Valdes, F. a. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” Journal of Applied Physics109, 043505 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited