OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9156–9166

Terahertz epsilon-near-zero graded-index lens

Víctor Torres, Víctor Pacheco-Peña, Pablo Rodríguez-Ulibarri, Miguel Navarro-Cía, Miguel Beruete, Mario Sorolla, and Nader Engheta  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 9156-9166 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An epsilon-near-zero graded-index converging lens with planar faces is proposed and analyzed. Each perfectly-electric conducting (PEC) waveguide comprising the lens operates slightly above its cut-off frequency and has the same length but different cross-sectional dimensions. This allows controlling individually the propagation constant and the normalized characteristic impedance of each waveguide for the desired phase front at the lens output while Fresnel reflection losses are minimized. A complete theoretical analysis based on the waveguide theory and Fermat’s principle is provided. This is complemented with numerical simulation results of two-dimensional and three-dimensional lenses, made of PEC and aluminum, respectively, and working in the terahertz regime, which show good agreement with the analytical work.

© 2013 OSA

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(080.3630) Geometric optics : Lenses
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: January 22, 2013
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 7, 2013
Published: April 5, 2013

Víctor Torres, Víctor Pacheco-Peña, Pablo Rodríguez-Ulibarri, Miguel Navarro-Cía, Miguel Beruete, Mario Sorolla, and Nader Engheta, "Terahertz epsilon-near-zero graded-index lens," Opt. Express 21, 9156-9166 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford, 2009).
  2. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  4. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046608 (2004). [CrossRef] [PubMed]
  5. M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.97(15), 157403 (2006). [CrossRef] [PubMed]
  6. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B75(15), 155410 (2007). [CrossRef]
  7. C. Bohren and D. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  8. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  9. J. Gómez Rivas, C. Janke, P. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express13(3), 847–859 (2005). [CrossRef] [PubMed]
  10. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  11. A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(1), 016604 (2008). [CrossRef] [PubMed]
  12. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express13(18), 6815–6820 (2005). [CrossRef] [PubMed]
  13. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses Based on Nanoscale Slit Arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009). [CrossRef] [PubMed]
  14. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett.85(4), 642–644 (2004). [CrossRef]
  15. C. Ma, M. Escobar, and Z. Liu, “Extraordinary light focusing and Fourier transform properties of gradient-index metalenses,” Phys. Rev. B84(19), 195142 (2011). [CrossRef]
  16. C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett.96(18), 183103 (2010). [CrossRef]
  17. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009). [CrossRef] [PubMed]
  18. S. Ishii, A. V. Kildishev, V. M. Shalaev, K. P. Chen, and V. P. Drachev, “Metal nanoslit lenses with polarization-selective design,” Opt. Lett.36(4), 451–453 (2011). [CrossRef] [PubMed]
  19. S. Ishii, A. V. Kildishev, V. M. Shalaev, and V. P. Drachev, “Controlling the wave focal structure of metallic nanoslit lenses with liquid crystals,” Laser Phys. Lett.8(11), 828–832 (2011). [CrossRef]
  20. S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett.13(1), 159–163 (2013). [CrossRef] [PubMed]
  21. D. M. Pozar, Microwave Engineering (Wiley, 2005).
  22. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008). [CrossRef] [PubMed]
  23. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B76(24), 245109 (2007). [CrossRef]
  24. R. E. Collin, Foundations for Microwave Engineering (Wiley, 2000).
  25. M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M. Sorolla Ayza, “Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays,” IEEE Trans. Antenn. Propag.55(6), 1514–1521 (2007). [CrossRef]
  26. M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Lensing system and Fourier transformation using epsilon-near-zero metamaterials,” Phys. Rev. B86(16), 165130 (2012). [CrossRef]
  27. D. Filipovic, S. Gearhart, and G. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE T. Microw. Theory41(10), 1738–1749 (1993). [CrossRef]
  28. N. Llombart, G. Chattopadhyay, A. Skalare, and I. Mehdi, “Novel terahertz antenna based on a silicon lens fed by a leaky wave enhanced waveguide,” IEEE Trans. Antenn. Propag.59(6), 2160–2168 (2011). [CrossRef]
  29. Microtech Instruments Inc, http://mtinstruments.com
  30. Thorlabs Inc, http://www.thorlabs.com
  31. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2004).
  32. W. Kock, “Metal-lens antennas,” Proceedings of the IRE34(11), 828–836 (1946). [CrossRef]
  33. J. Ruze, “Wide-angle metal-plate optics,” Proceedings of the IRE38(1), 853–855 (1950). [CrossRef]
  34. M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla Ayza, “Beamforming by left-handed extraordinary transmission metamaterial bi- and plano-concave lens at millimeter-waves,” IEEE Trans. Antenn. Propag.59(6), 2141–2151 (2011). [CrossRef]
  35. H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, 2000).
  36. M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B83(11), 115112 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited