OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9167–9179

Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems

Q. W. Zhang, E. Hugues-Salas, R. P. Giddings, M. Wang, and J. M. Tang  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 9167-9179 (2013)
http://dx.doi.org/10.1364/OE.21.009167


View Full Text Article

Enhanced HTML    Acrobat PDF (3305 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Record-high 19.25Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) colorless transmissions across the entire C-band are experimentally demonstrated, for the first time, in reflective electro-absorption modulator (REAM)-based 25km standard SMF systems using intensity modulation and direct detection. Adaptively modulated baseband (0-2GHz) and passband (6.125 ± 2GHz) OFDM RF sub-bands, supporting signal line rates of 9.75Gb/s and 9.5Gb/s respectively, are independently generated and detected with FPGA-based DSP clocked at only 100MHz as well as DACs/ADCs operating at sampling speeds as low as 4GS/s. The two OFDM sub-bands are electrically multiplexed for intensity modulation of a single optical carrier by an 8GHz REAM. The REAM colorlessness is experimentally characterized, based on which optimum REAM operating conditions are identified. To maximize and balance the signal transmission performance of each sub-band, on-line adaptive transceiver optimization functions and live performance monitoring are fully exploited to optimize key OOFDM transceiver and system parameters. For different wavelengths within the C-band, corresponding minimum received optical powers at the FEC limit vary in a range of <0.5dB and bit error rate performances for both baseband and passband signals are almost identical. Furthermore, detailed investigations are also undertaken of the maximum aggregated signal line rate sensitivity to electrical sub-band power variation. It is shown that the aforementioned system has approximately 3dB tolerance to RF sub-band power variation.

© 2013 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 22, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: April 2, 2013
Published: April 5, 2013

Citation
Q. W. Zhang, E. Hugues-Salas, R. P. Giddings, M. Wang, and J. M. Tang, "Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems," Opt. Express 21, 9167-9179 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-9167


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. G. Kazovsky, W. Shaw, D. Gutierrez, N. Cheng, and S. Wong, “Next-generation optical access networks,” J. Lightwave Technol.25(11), 3428–3442 (2007). [CrossRef]
  2. J. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1290–1297 (2010). [CrossRef]
  3. S. Kaneko, J. Kani, K. Iwatsuki, A. Ohki, M. Sugo, and S. Kamei, “Scalability of spectrum-sliced DWDM transmission and its expansion using forward error correction,” J. Lightwave Technol.24(3), 1295–1301 (2006). [CrossRef]
  4. F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .
  5. H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” European Conference on Optical Communication (ECOC), (Berlin, 2007), Paper PD3.4.
  6. R. Urata, C. Lam, H. Liu, and C. Johnson, “High performance, low cost, colorless ONU for WDM-PON,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2012), Paper Nth3E.4.
  7. N. Genay, P. Chanclou, R. Brenot, M. Moignard, and F. Payoux, “Colourless ONU modules in TDM-PON and WDM-PON architectures for optical carrier remote modulation,” European Conference on Optical Communication (ECOC), (Glasgow, 2005), Paper Tu1.3.6. [CrossRef]
  8. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009). [CrossRef]
  9. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010). [CrossRef]
  10. X. Q. Jin and J. M. Tang, “Experimental investigations of wavelength spacing and colorlessness of RSOA-based ONUs in real-time optical OFDMA PONs,” J. Lightwave Technol.30(16), 2603–2609 (2012). [CrossRef]
  11. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” European Conference on Optical Communication (ECOC), (Brussels, 2008), Paper Th.3.F.1. [CrossRef]
  12. A. Borghesani, “Reflective based active semiconductor components for next generation optical access networks,” European Conference on Optical Communication (ECOC), (Torino, 2010), Paper Mo.1.B.1. [CrossRef]
  13. S. C. Lin, S. L. Lee, C. K. Liu, C. L. Yang, S. C. Ko, T. W. Liaw, and G. Keiser, “Design and demonstration of REAM-based WDM-PONs with remote amplification and channel fault monitoring,” J. Opt. Commun. Netw.4(4), 336–343 (2012). [CrossRef]
  14. Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012). [CrossRef]
  15. D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol.23(1), 187–195 (2005). [CrossRef]
  16. C. H. Lee, “WDM-PON overview,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .
  17. Z. Xu, Y. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-division-multiplexing OFDM-PON,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2012), Paper OW4B.3.
  18. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access network,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (San Diego, 2009), Paper OMV1.
  19. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, T. Quinlan, Y. Hong, S. Walker, and J. M. Tang, “REAM intensity modulator–enabled colorless transmission of real-time optical OFDM signals for WDM-PONs,” European Conference on Optical Communication (ECOC), (Amsterdam, 2012), Paper P6.15.
  20. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express20(18), 20666–20679 (2012). [CrossRef] [PubMed]
  21. X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J.3(3), 500–511 (2011). [CrossRef]
  22. M. P. Thakur, T. J. Quinlan, C. Bock, S. D. Walker, M. Toycan, S. E. M. Dudley, D. W. Smith, A. Borghesani, D. Moodie, M. Ran, and Y. Ben-Ezra, “480-Mbps, bi-directional, ultra-wideband radio-over-fiber transmission using a 1308/1564-nm reflective electro-absorption transducer and commercially available VCSELs,” J. Lightwave Technol.27(3), 266–272 (2009). [CrossRef]
  23. X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photon. J.3(2), 187–196 (2011). [CrossRef]
  24. R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express18(6), 5541–5555 (2010). [CrossRef] [PubMed]
  25. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express19(4), 2979–2988 (2011). [CrossRef] [PubMed]
  26. X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express16(25), 20427–20440 (2008). [CrossRef] [PubMed]
  27. E. Lach, K. Schuh, and M. Schmidt, “Application of electro-absorption modulators for high-speed transmission systems,” J. Opt. Fiber Commun. Rep.2(2), 140–170 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited