OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10010–10018

Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser

Yu Feng Song, Lei Li, Han Zhang, De Yuan Shen, Ding Yuan Tang, and Kian Ping Loh  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10010-10018 (2013)
http://dx.doi.org/10.1364/OE.21.010010


View Full Text Article

Enhanced HTML    Acrobat PDF (1841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally investigated the vector multi-soliton operation and vector soliton interaction in an erbium doped fiber laser passively mode locked by atomic layer graphene. It is found that the vector multi-soliton operation exhibited several characteristic modes. These are the random static distribution of vector solitons, stable bunches of vector solitons, restless oscillations of vector solitons, rain of vector solitons, and emission of a so-called “giant vector soliton”. The formation mechanisms of the operation modes were also experimentally investigated.

© 2013 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 25, 2013
Revised Manuscript: March 29, 2013
Manuscript Accepted: March 31, 2013
Published: April 15, 2013

Citation
Yu Feng Song, Lei Li, Han Zhang, De Yuan Shen, Ding Yuan Tang, and Kian Ping Loh, "Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser," Opt. Express 21, 10010-10018 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10010


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005). [CrossRef]
  2. P. Grelu and J. M. Soto-Crespo, “Temporal soliton molecules in mode-locked lasers: collisions, pulsations and vibrations,” in Dissipative solitons: from optics to biology and medicine, N. Akhmediev and A. Ankiewicz, eds. (Springer-Verlag, 2008).
  3. P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. Soc. Am.B.6(5), S271–S278 (2004). [CrossRef]
  4. N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons: From optics to biology and medicine (Springer, Berlin-Heidelberg, 2008), Lecture Notes in Physics, V 751.
  5. M. Olivier, V. Roy, M. Piché, and F. Babin, “Pulse collisions in the stretched-pulse fiber laser,” Opt. Lett.29(13), 1461–1463 (2004). [CrossRef] [PubMed]
  6. M. Grapinet and Ph. Grelu, “Vibrating soliton pairs in a mode-locked laser cavity,” Opt. Lett.31(14), 2115–2117 (2006). [CrossRef] [PubMed]
  7. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express17(10), 8103–8108 (2009). [CrossRef] [PubMed]
  8. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked laser,” Phys. Rev. A64(3), 033814 (2001). [CrossRef]
  9. S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A81(6), 063829 (2010). [CrossRef]
  10. S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express17(14), 11776–11781 (2009). [CrossRef] [PubMed]
  11. J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, “Vector soliton fiber lasers,” Opt. Lett.24(6), 376–378 (1999). [CrossRef] [PubMed]
  12. S. T. Cundiff, B. C. Collings, and W. H. Knox, “Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser,” Opt. Express1(1), 12–21 (1997). [CrossRef] [PubMed]
  13. V. V. Afanasjev, “Soliton polarization rotation in fiber lasers,” Opt. Lett.20(3), 270–272 (1995). [CrossRef] [PubMed]
  14. M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett.14(18), 1011–1013 (1989). [CrossRef] [PubMed]
  15. R. Gumenyuk and O. G. Okhotnikov, “Temporal control of vector soliton bunching by slow/fast saturable absorption,” J. Opt. Soc. Am. B29(1), 1–7 (2012). [CrossRef]
  16. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  17. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010). [CrossRef]
  18. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010). [CrossRef] [PubMed]
  19. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009). [CrossRef] [PubMed]
  20. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992). [CrossRef]
  21. H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express16(17), 12618–12623 (2008). [CrossRef] [PubMed]
  22. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016616 (2005). [CrossRef] [PubMed]
  23. Y. F. Song, H. Zhang, D. Y. Tang, and Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express20(24), 27283–27289 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3138 KB)     
» Media 2: MOV (3504 KB)     
» Media 3: MOV (3124 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited