OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10025–10038

Competition between second harmonic generation and two-photon-induced luminescence in single, double and multiple ZnO nanorods

Jun Dai, Jian-Hua Zeng, Sheng Lan, Xia Wan, and Shao-Long Tie  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 10025-10038 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1783 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear optical properties of single, double and multiple ZnO nanorods (NRs) were investigated by using a focused femtosecond (fs) laser beam. The excitation wavelength of the fs laser was intentionally chosen to be 754 nm at which the energy of two photons is slightly larger than that of the exciton ground state but smaller than the bandgap energy of ZnO. Second harmonic generation (SHG) or/and two-photon-induced luminescence (TPL) were observed and their dependences on excitation density were examined. For single ZnO NRs, only SHG was observed even at the highest excitation density we used in the experiments. The situation was changed when the joint point of two ZnO NRs perpendicular to each other was excited. In this case, TPL could be detected at low excitation densities and it increased rapidly with increasing excitation density. At the highest excitation density of ~15 MW/cm2, the intensity of the TPL became comparable to that of the SHG. For an ensemble of ZnO NRs packed closely, a rapid increase of TPL with a slope of more than 7.0 and a gradual saturation of SHG with a slope of ~0.34 were found at high excitation densities. Consequently, the nonlinear response spectrum was eventually dominated by the TPL at high excitation densities and the SHG appeared to be very weak. We interpret this phenomenon by considering both the difference in electric field distribution and the effect of heat accumulation. It is suggested that the electric field enhancement in double and multiple NRs plays a crucial role in determining the nonlinear response of the NRs. In addition, the reduction in the bandgap energy induced by the heat accumulation effect also leads to the significant change in nonlinear response. This explanation is supported by the calculation of the electric field distribution using the discrete dipole approximation method and the simulation of temperature rise in different ZnO NRs based on the finite element method.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Nonlinear Optics

Original Manuscript: March 4, 2013
Revised Manuscript: April 8, 2013
Manuscript Accepted: April 9, 2013
Published: April 15, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Jun Dai, Jian-Hua Zeng, Sheng Lan, Xia Wan, and Shao-Long Tie, "Competition between second harmonic generation and two-photon-induced luminescence in single, double and multiple ZnO nanorods," Opt. Express 21, 10025-10038 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. F. Service, “Will UV lasers beat the blues?” Science276(5314), 895 (1997). [CrossRef]
  2. M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, “Three-dimensional imaging of strain in a single ZnO nanorod,” Nat. Mater.9(2), 120–124 (2010). [CrossRef] [PubMed]
  3. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997). [CrossRef]
  4. O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem.21(45), 18354–18358 (2011). [CrossRef]
  5. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997). [CrossRef]
  6. D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett.82(12), 2552–2555 (1999). [CrossRef]
  7. B. S. Zou, V. V. Volkov, and Z. L. Wang, “Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution,” Chem. Mater.11(11), 3037–3043 (1999). [CrossRef]
  8. J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006). [CrossRef] [PubMed]
  9. S. Wu, N. Yuan, H. Xu, X. Wang, and Z. A. Schelly, “Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles,” Nanotechnology17(18), 4713–4718 (2006). [CrossRef] [PubMed]
  10. D. Tainoff, B. Masenelli, O. Boisron, G. Guiraud, and P. Mélinon, “Crystallinity, stoichiometry, and luminescence of high quality ZnO nanoclusters,” J. Phys. Chem. C112(33), 12623–12627 (2008). [CrossRef]
  11. B. Jin and D. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin.132(8), 1879–1884 (2012). [CrossRef]
  12. Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size dependence of dielectric constant in a single pencil-like ZnO nanowire,” Nano Lett.12(4), 1919–1922 (2012). [CrossRef] [PubMed]
  13. G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011). [CrossRef] [PubMed]
  14. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002). [CrossRef]
  15. J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010). [CrossRef]
  16. H. Guo, Z. Lin, Z. Feng, L. Lin, and J. Zhou, “White-light-emitting diode based on ZnO nanotubes,” J. Phys. Chem. C113(28), 12546–12550 (2009). [CrossRef]
  17. C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008). [CrossRef]
  18. J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012). [CrossRef]
  19. S. Baskoutas and G. Bester, “Transition in the optical emission polarization of ZnO nanorods,” J. Phys. Chem. A115, 15862–15867 (2011). [PubMed]
  20. Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route,” Langmuir20(8), 3441–3448 (2004). [CrossRef] [PubMed]
  21. J. W. Zhao, L. R. Qin, Z. D. Xiao, and L. D. Zhang, “Synthesis and characterization of novel flower-shaped ZnO nanostructures,” Mater. Chem. Phys.105(2-3), 194–198 (2007). [CrossRef]
  22. X. D. Gao, X. M. Li, and W. D. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B109(3), 1155–1161 (2005). [CrossRef] [PubMed]
  23. B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J Biophotonics5(3), 283–291 (2012). [CrossRef] [PubMed]
  24. B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011). [CrossRef]
  25. Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008). [CrossRef] [PubMed]
  26. S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B77(11), 113311 (2008). [CrossRef]
  27. M. Chattopadhyay, P. Kumbhakar, C. S. Tiwary, A. K. Mitra, U. Chatterjee, and T. Kobayashi, “Three-photon-induced four-photon absorption and nonlinear refraction in ZnO quantum dots,” Opt. Lett.34(23), 3644–3646 (2009). [CrossRef] [PubMed]
  28. J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films,” J. Appl. Phys.97(3), 033526 (2005). [CrossRef]
  29. D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett.30(24), 3377–3379 (2005). [CrossRef] [PubMed]
  30. G. P. Zhu, J. Zhu, C. X. Xu, X. Li, J. P. Liu, and Y. P. Cui, “Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods,” Appl. Phys., A Mater. Sci. Process.95(2), 381–385 (2009). [CrossRef]
  31. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004). [CrossRef]
  32. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  33. H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013). [CrossRef] [PubMed]
  34. R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006). [CrossRef] [PubMed]
  35. R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett.88(18), 181501 (2006). [CrossRef]
  36. D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO,” IEEE Photon. Technol. Lett.18(14), 1533–1535 (2006). [CrossRef]
  37. B. T. Draine and P. J. Flatau, User guide for the discrete dipole approximation code DDSCAT 7.2, arXiv: 1202.3424 (2012).
  38. B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett.88(16), 161101 (2006). [CrossRef]
  39. T. Y. Hou and X. H. Wu, “A multiscale finite element method for elliptic problems in composite materials and porous media,” J. Comput. Phys.134(1), 169–189 (1997). [CrossRef]
  40. S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys.33(8-9), 1686–1703 (2012). [CrossRef]
  41. J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, and J. Rodríguez-Viejo, “Temperature dependent thermal conductivity of polycrystalline ZnO films,” J. Appl. Phys.107(6), 063713 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited