OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10139–10159

Design of quasi-phasematching gratings via convex optimization

C. R. Phillips, L. Gallmann, and M. M. Fejer  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 10139-10159 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new approach to quasi-phasematching (QPM) design based on convex optimization. We show that with this approach, globally optimum solutions to several important QPM design problems can be determined. The optimization framework is highly versatile, enabling the user to trade-off different objectives and constraints according to the particular application. The convex problems presented consist of simple objective and constraint functions involving a few thousand variables, and can therefore be solved quite straightforwardly. We consider three examples: (1) synthesis of a target pulse profile via difference frequency generation (DFG) from two ultrashort input pulses, (2) the design of a custom DFG transfer function, and (3) a new approach enabling the suppression of spectral gain narrowing in chirped-QPM-based optical parametric chirped pulse amplification (OPCPA). These examples illustrate the power and versatility of convex optimization in the context of QPM devices.

© 2013 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(320.7080) Ultrafast optics : Ultrafast devices
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: January 8, 2013
Revised Manuscript: March 1, 2013
Manuscript Accepted: March 1, 2013
Published: April 16, 2013

C. R. Phillips, L. Gallmann, and M. M. Fejer, "Design of quasi-phasematching gratings via convex optimization," Opt. Express 21, 10139-10159 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B25, 463–480 (2008). [CrossRef]
  2. L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J. Meyn, “Generation of sub-6-fs blue pulses by frequency doubling with quasi-phase-matching gratings,” Opt. Lett.26, 614–616 (2001). [CrossRef]
  3. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with fourier synthetic quasi-phase-matching gratings,” Opt. Lett.23, 864–866 (1998). [CrossRef]
  4. G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, “Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,” J. Opt. Soc. Am. B17, 1420–1437 (2000). [CrossRef]
  5. M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, “Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett.30, 634–636 (2005). [CrossRef] [PubMed]
  6. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequencyconversion,” Opt. Express17, 12731–12740 (2009). [CrossRef] [PubMed]
  7. C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett.35, 3093–3095 (2010). [CrossRef] [PubMed]
  8. C. R. Phillips and M. M. Fejer, “Adiabatic optical parametric oscillators: steady-state and dynamical behavior,” Opt. Express20, 2466–2482 (2012). [CrossRef] [PubMed]
  9. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett.31, 604–606 (2006). [CrossRef] [PubMed]
  10. S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical super-lattice,” Science278, 843–846 (1997). [CrossRef]
  11. K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quant. Electron.35, 1649–1656 (1999). [CrossRef]
  12. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett.88, 023903–023906 (2001). [CrossRef]
  13. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quant. Electron.41, 1540–1547 (2005). [CrossRef]
  14. G. Porat, Y. Silberberg, A. Arie, and H. Suchowski, “Two photon frequency conversion,” Opt. Express20, 3613–3619 (2012). [CrossRef] [PubMed]
  15. G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B18, 534–539 (2001). [CrossRef]
  16. U. Sapaev and D. Reid, “General second-harmonic pulse shaping in grating-engineered quasi-phase-matched nonlinear crystals,” Opt. Express13, 3264–3276 (2005). [CrossRef] [PubMed]
  17. M. Conforti, F. Baronio, and C. D. Angelis, “From femtosecond infrared to picosecond visible pulses: temporal shaping with high-efficiency conversion,” Opt. Lett.32, 1779–1781 (2007). [CrossRef] [PubMed]
  18. Ł. Kornaszewski, M. Kohler, U. K. Sapaev, and D. T. Reid, “Designer femtosecond pulse shaping using grating-engineered quasi-phase-matching in lithium niobate,” Opt. Lett.33, 378–380 (2008). [CrossRef] [PubMed]
  19. M. A. Albota and F. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett.29, 1449–1451 (2004). [CrossRef] [PubMed]
  20. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011). [CrossRef] [PubMed]
  21. J. S. Pelc, Q. Zhang, C. R. Phillips, L. Yu, Y. Yamamoto, and M. M. Fejer, “Cascaded frequency upconversion for high-speed single-photon detection at 1550 nm,” Opt. Lett.37, 476–478 (2012). [CrossRef] [PubMed]
  22. T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev, G. Tempea, T. Udem, C. Gohle, T. W. Haensch, W. Lehnert, M. Scherer, and F. Krausz, “Monolithic carrier-envelope phase-stabilization scheme,” Opt. Lett.30, 332–334 (2005). [CrossRef] [PubMed]
  23. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett.32, 2478–2480 (2007). [CrossRef] [PubMed]
  24. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett.36, 3912–3914 (2011). [CrossRef] [PubMed]
  25. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express19, 18754–18773 (2011). [CrossRef] [PubMed]
  26. X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2) : χ(2) nonlinearity,” Opt. Lett.24, 1777–1779 (1999). [CrossRef]
  27. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett.31, 1881–1883 (2006). [CrossRef] [PubMed]
  28. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature432, 374–376 (2004). [CrossRef] [PubMed]
  29. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett.95, 133901–133904 (2005). [CrossRef] [PubMed]
  30. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photon.1, 459–462 (2007). [CrossRef]
  31. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron.28, 2631–2654 (1992). [CrossRef]
  32. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett.36, 864–866 (2011). [CrossRef] [PubMed]
  33. C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phasematching gratings with random duty cycle errors,” J. Opt. Soc. Am. B (to be published).
  34. S. P. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
  35. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A81, 053841–053844 (2010). [CrossRef]
  36. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt.91, 343–348 (2008). [CrossRef]
  37. M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version 1.21 (2011).
  38. V. J. Hernandez, C. V. Bennett, B. D. Moran, A. D. Drobshoff, D. Chang, C. Langrock, M. M. Fejer, and M. Ibsen, “104 MHz rate single-shot recording with subpicosecond resolution using temporal imaging,” Opt. Express21, 196–203 (2013). [CrossRef] [PubMed]
  39. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B17, 304–318 (2000). [CrossRef]
  40. S. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 μm,” Opt. Lett.30, 2164–2166 (2005). [CrossRef] [PubMed]
  41. Z. Jiang, D. S. Seo, S. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Four-User, 2.5-Gb/s, spectrally coded OCDMA system demonstration using Low-Power nonlinear processing,” J. Lightwave Technol.23, 143–158 (2005). [CrossRef]
  42. G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance,” PhD dissertation, Stanford University, Stanford, CA (1998).
  43. S. Witte and K. Eikema, “Ultrafast optical parametric Chirped-Pulse amplification,” Selected Topics in IEEE J. Quant. Electron.18, 296–307 (2012). [CrossRef]
  44. C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA,” Opt. Express20, 26888–26894 (2012). [CrossRef] [PubMed]
  45. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett.74, 2268–2270 (1999). [CrossRef]
  46. T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 μm,” Opt. Lett.31, 1103–1105 (2006). [CrossRef] [PubMed]
  47. Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, and N. Karpowicz, “Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laserpulses at 2.1 μm,” Opt. Lett.37, 4973–4975 (2012). [CrossRef] [PubMed]
  48. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers,” J. Opt. Soc. Am. B25, 1402–1413 (2008). [CrossRef]
  49. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Theory and simulation of gain-guided noncollinear modes in chirped quasi-phase-matched optical parametric amplifiers,” J. Opt. Soc. Am. B27, 824–841 (2010).
  50. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett.35, 2340–2342 (2010). [CrossRef] [PubMed]
  51. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Role of apodization in optical parametric amplifiers based on aperiodic quasi-phasematching gratings,” Opt. Express20, 18066–18071 (2012). [CrossRef] [PubMed]
  52. M. N. Rosenbluth, “Parametric instabilities in inhomogeneous media,” Phys. Rev. Lett.29, 565–567 (1972). [CrossRef]
  53. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phsematching devces,” submitted to J. Opt. Soc. Am. B.
  54. G. D. Boyd, “Parametric interaction of focused gaussian light beams,” Journal of Applied Physics39, 3597–3639 (1968). [CrossRef]
  55. J. E. Schaar, “Terahertz sources based on intracavity parametric frequency down-conversion using quasi-phase-matched gallium arsenide,” PhD dissertation, Stanford University, Stanford, CA (2009).
  56. C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B27, 2687–2699 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited