OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10160–10165

Optimizing photonic crystal waveguides for on-chip spectroscopic applications

Andreas C. Liapis, Zhimin Shi, and Robert W. Boyd  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 10160-10165 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1061 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the applicability of photonic crystal waveguides to high-resolution on-chip spectrometers. We argue that the figure of merit by which their performance should be gauged is not the group index bandwidth product, which photonic crystal waveguides are usually optimized for, but the working finesse, which relates to the maximum number of spectral lines resolvable by a slow-light spectrometer. Through numerical simulation, we show that a properly-optimized photonic crystal waveguide could form the basis of a spectrometer with a spectral resolution of 0.04 nm over a 12.5 nm bandwidth near 1550 nm and with a footprint six times smaller than a conventional spectrometer.

© 2013 OSA

OCIS Codes
(300.6190) Spectroscopy : Spectrometers
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:

Original Manuscript: February 4, 2013
Revised Manuscript: April 6, 2013
Manuscript Accepted: April 8, 2013
Published: April 16, 2013

Andreas C. Liapis, Zhimin Shi, and Robert W. Boyd, "Optimizing photonic crystal waveguides for on-chip spectroscopic applications," Opt. Express 21, 10160-10165 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Quantum Electron.2(2), 236–250 (1996). [CrossRef]
  2. B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun.282(15), 3168–3171 (2009). [CrossRef]
  3. Z. J. Sun and K. A. McGreer, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett.10(1), 90–92 (1998). [CrossRef]
  4. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express18(1), 102–107 (2010). [CrossRef] [PubMed]
  5. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m,” Appl. Phys. Lett.67(17), 2448–2449 (1995). [CrossRef]
  6. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett.32(6), 632–634 (2007). [CrossRef] [PubMed]
  7. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19(13), 12356–12364 (2011). [CrossRef] [PubMed]
  8. X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012). [CrossRef]
  9. P. B. Deotare, L. Kogos, Q. Quan, R. Ilic, and M. Loncar, “On-chip integrated spectrometer using nanobeam photonic crystal cavities,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM3B.4.
  10. W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz Channel Spacing InP-Based 32-Channel Arrayed-Waveguide Grating,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.
  11. Z. Shi and R. W. Boyd, “Slow-light enhanced spectrometers on chip,” Proc. SPIE8007,80071D (2011). [CrossRef]
  12. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32(8), 915–917 (2007). [CrossRef] [PubMed]
  13. Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, Slow-light Fourier transform interferometer, Phys. Rev. Lett.99(24), 240801 (2007). [CrossRef]
  14. Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B25(12), C136–C143 (2008). [CrossRef]
  15. R. Jacobsen, A. Lavrinenko, L. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express13(20), 7861–7871 (2005). [CrossRef] [PubMed]
  16. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14(20), 9444–9450 (2006). [CrossRef] [PubMed]
  17. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  18. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012). [CrossRef]
  19. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010). [CrossRef]
  20. H. Lotfi, N. Granpayeh, and S. A. Schulz, “Photonic crystal waveguides with ultra-low group velocity,” Opt. Commun.285(10), 2743–2745 (2012). [CrossRef]
  21. F. Wang, J. S. Jensen, and O. Sigmund, “High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts,” Photon. Nanostruct.: Fundam. Appl.10(4), 378–388 (2012). [CrossRef]
  22. Z. Shi and R. W. Boyd, “Fundamental limits to slow-light arrayed-waveguide-grating spectrometers,” Opt. Express21(6), 7793 (2013). [CrossRef] [PubMed]
  23. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005). [CrossRef]
  24. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity,” Phys. Rev. Lett.94(3), 033903 (2005). [CrossRef] [PubMed]
  25. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010). [CrossRef]
  26. Available online at: www.st-andrews.ac.uk/microphotonics
  27. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  28. M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009). [CrossRef]
  29. J. Topolancik, B. Ilic, and Frank Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett.99(25), 253901(2007). [CrossRef]
  30. M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited