OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10188–10198

Sensitive absorption imaging of single atoms in front of a mirror

Atreju Tauschinsky and Robert J. C. Spreeuw  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10188-10198 (2013)
http://dx.doi.org/10.1364/OE.21.010188


View Full Text Article

Enhanced HTML    Acrobat PDF (1488 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we show that the sensitivity of absorption imaging of ultracold atoms can be significantly improved by imaging in a standing-wave configuration. We present simulations of single-atom absorption imaging both for a travelling-wave and a standing-wave imaging setup, based on a scattering approach to calculate the optical density of a single atom. We find that the optical density of a single atom is determined only by the numerical aperture of the imaging system. We determine optimum imaging parameters, taking all relevant sources of noise into account. For reflective imaging we find an improvement of 1.7 in the maximum signal-to-noise ratio can be achieved. This is particularly useful for imaging in the vicinity of an atom chip, where a reflective surface is naturally present.

© 2013 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(030.4280) Coherence and statistical optics : Noise in imaging systems

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: February 22, 2013
Revised Manuscript: April 8, 2013
Manuscript Accepted: April 8, 2013
Published: April 16, 2013

Citation
Atreju Tauschinsky and Robert J. C. Spreeuw, "Sensitive absorption imaging of single atoms in front of a mirror," Opt. Express 21, 10188-10198 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10188


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, “Localized visible Bâ{+} mono-ion oscillator,” Phys. Rev. A.22, 1137–1140 (1980). [CrossRef]
  2. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap.” Nature411, 1024–7 (2001). [CrossRef] [PubMed]
  3. K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys.3, 556–560 (2007). [CrossRef]
  4. M. Wilzbach, D. Heine, S. Groth, X. Liu, T. Raub, B. Hessmo, and J. Schmiedmayer, “Simple integrated single-atom detector,” Opt. Lett.34, 259–261 (2009). [CrossRef] [PubMed]
  5. R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009). [CrossRef]
  6. D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” New J. Phys.12, 095005 (2010). [CrossRef]
  7. J. Goldwin, M. Trupke, J. Kenner, a. Ratnapala, and E. a. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity.” Nature Commun.2, 418 (2011). [CrossRef]
  8. J. Bochmann, M. Mücke, C. Guhl, S. Ritter, G. Rempe, and D. L. Moehring, “Lossless State Detection of Single Neutral Atoms,” Phys. Rev. Lett.104, 203601 (2010). [CrossRef] [PubMed]
  9. R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-Based Single Atom Preparation and High-Fidelity Hyperfine State Readout,” Phys. Rev. Lett.104, 203602 (2010). [CrossRef] [PubMed]
  10. D. J. Wineland, W. M. Itano, and J. C. Bergquist, “Absorption spectroscopy at the limit: detection of a single atom.” Opt. Lett.12, 389–391 (1987). [CrossRef] [PubMed]
  11. E. W. Streed, A. Jechow, B. G. Norton, and D. Kielpinski, “Absorption imaging of a single atom.” Nature Commun.3, 933 (2012). [CrossRef]
  12. M. K. Tey, G. Maslennikov, T. C H Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys.11, 043011 (2009). [CrossRef]
  13. D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express19, 8471 (2011). [CrossRef] [PubMed]
  14. V. Y. F. Leung, A. Tauschinsky, N. J. Druten, and R. J. C. Spreeuw, “Microtrap arrays on magnetic film atom chips for quantum information science,” Quantum Inf. Proc.10, 955–974 (2011). [CrossRef]
  15. R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J.-U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A.76, 033408 (2007). [CrossRef]
  16. S. Whitlock, R. Gerritsma, T. Fernholz, and R. J. Spreeuw, “Two-dimensional array of microtraps with atomic shift register on a chip,” New J. Phys.11, 023021 (2009). [CrossRef]
  17. A. J. E. M. Janssen, “Extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A.19, 849 (2002). [CrossRef]
  18. C. Ockeloen, A. Tauschinsky, R. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A.82, 061606 (2010). [CrossRef]
  19. D. A. Steck, “Rubidium 87 D Line Data,” http://steck.us/alkalidata 2 (2010).
  20. S. Whitlock, C. F. Ockeloen, and R. J. C. Spreeuw, “Sub-Poissonian Atom-Number Fluctuations by Three-Body Loss in Mesoscopic Ensembles,” Phys. Rev. Lett.104, 120402 (2010). [CrossRef] [PubMed]
  21. C. Cohen-Tannoudij, J. Dupont-Roc, and G. Grynberg, Atom—Photon Interactions (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited