OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10228–10233

Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths

Krishna C. Balram, Ross M. Audet, and David A. B. Miller  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10228-10233 (2013)
http://dx.doi.org/10.1364/OE.21.010228


View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of a subwavelength planar metal-dielectric resonant cavity to enhance the absorption of germanium photodetectors at wavelengths beyond the material’s direct absorption edge, enabling high responsivity across the entire telecommunications C and L bands. The resonant wavelength of the detectors can be tuned linearly by varying the width of the Ge fin, allowing multiple detectors, each resonant at a different wavelength, to be fabricated in a single-step process. This approach is promising for the development of CMOS-compatible devices suitable for integrated, high-speed, and energy-efficient photodetection at telecommunications wavelengths.

© 2013 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(230.5160) Optical devices : Photodetectors
(250.0250) Optoelectronics : Optoelectronics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(070.5753) Fourier optics and signal processing : Resonators

ToC Category:
Detectors

History
Original Manuscript: February 20, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: March 31, 2013
Published: April 18, 2013

Citation
Krishna C. Balram, Ross M. Audet, and David A. B. Miller, "Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths," Opt. Express 21, 10228-10233 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science332(6025), 60–65 (2011). [CrossRef] [PubMed]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  3. R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems - OSA Technical Digest,” in Optical Fiber Communication Conference (Optical Society of America, 2012), OM2E.6.
  4. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010). [CrossRef]
  5. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  6. G. Li, Y. Luo, X. Zheng, G. Masini, A. Mekis, S. Sahni, H. Thacker, J. Yao, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Improving CMOS-compatible Germanium photodetectors,” Opt. Express20(24), 26345–26350 (2012). [CrossRef] [PubMed]
  7. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005). [CrossRef]
  8. R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011). [CrossRef]
  9. J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics6(6), 398–405 (2012). [CrossRef]
  10. D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K. C.-Y. Huang, Z. Yuan, M. Brongersma, Y. Nishi, D. Miller, and K. Saraswat, “Strained germanium thin film membrane on silicon substrate for optoelectronics,” Opt. Express19(27), 25866–25872 (2011). [CrossRef] [PubMed]
  11. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008). [CrossRef]
  12. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005). [CrossRef]
  13. C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004). [CrossRef]
  14. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010). [CrossRef] [PubMed]
  15. R. Chen, H. Chin, D. A. B. Miller, Kai Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett.17(6), 1271–1273 (2005). [CrossRef]
  16. A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett.85(14), 2815–2817 (2004). [CrossRef]
  17. J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics,” Opt. Mater. Express1(6), 1121–1126 (2011). [CrossRef]
  18. K. C. Balram and D. A. B. Miller, “Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors,” Opt. Express20(20), 22735–22742 (2012). [CrossRef] [PubMed]
  19. S. Y. Chou and M. Y. Liu, “Nanoscale tera-hertz metal-semiconductor-metal photodetectors,” IEEE J. Quantum Electron.28(10), 2358–2368 (1992). [CrossRef]
  20. A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett.89(25), 252110 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited