OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10259–10268

An interference coating of metamaterial as an ultrathin light absorber in the violet-to-infrared regime

Yi-Jun Jen, Meng-Jie Lin, Huang-Ming Wu, Hung-Sheng Liao, and Jia-Wei Dai  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10259-10268 (2013)
http://dx.doi.org/10.1364/OE.21.010259


View Full Text Article

Enhanced HTML    Acrobat PDF (2421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A metamaterial with brief and ultrathin structure performs high efficiency in light absorption. An upright aluminum nanorod array (Al NRA) is obliquely deposited, measured, and analyzed its optical property. The Al NRA performs high efficiency of light absorption and low reflectance simultaneously. Based on the measured refractive index and impedances, the wave propagation through the Al NRA is traced to demonstrate the destructive interference that leads to antireflection. According to the analysis of wave tracing, an Al semicontinuous film with thickness of 15nm is introduced under an Al NRA with thickness of only 245nm as a brief and thin two-layered structure. The broadband and polarization-independent light absorption is measured over the violet-to-infrared regime.

© 2013 OSA

OCIS Codes
(310.1620) Thin films : Interference coatings
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: February 8, 2013
Revised Manuscript: April 9, 2013
Manuscript Accepted: April 12, 2013
Published: April 18, 2013

Citation
Yi-Jun Jen, Meng-Jie Lin, Huang-Ming Wu, Hung-Sheng Liao, and Jia-Wei Dai, "An interference coating of metamaterial as an ultrathin light absorber in the violet-to-infrared regime," Opt. Express 21, 10259-10268 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  2. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81(16), 165401 (2010). [CrossRef]
  3. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  4. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008). [CrossRef] [PubMed]
  5. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  7. W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B77(23), 233101 (2008). [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  9. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010). [CrossRef] [PubMed]
  10. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010). [CrossRef] [PubMed]
  11. M. G. Silveirinha, “Additional Boundary Condition for the Wire Medium,” IEEE Trans. Antenn. Propag.54(6), 1766–1780 (2006). [CrossRef]
  12. P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003). [CrossRef]
  13. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011). [CrossRef] [PubMed]
  14. C. É. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron.16(2), 367–375 (2010). [CrossRef]
  15. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010). [CrossRef] [PubMed]
  16. Y.-J. Jen, C.-H. Chen, and C.-W. Yu, “Deposited metamaterial thin film with negative refractive index and permeability in the visible regime,” Opt. Lett.36(6), 1014–1016 (2011). [CrossRef] [PubMed]
  17. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
  18. K. Seal, M. A. Nelson, Z. C. Ying, D. Genov, A. Sarychev, and V. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B67(3), 035318 (2003). [CrossRef]
  19. A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative Refractive Index in Optics of Metal-Dielectric Composites,” J. Opt. Soc. Am. B23(3), 423–433 (2006). [CrossRef]
  20. K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-Field Intensity Correlations in Semicontinuous Metal-Dielectric Films,” Phys. Rev. Lett.94(22), 226101 (2005). [CrossRef] [PubMed]
  21. U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B100(1), 159–168 (2010). [CrossRef]
  22. D. A. Genov, V. M. Shalaev, and A. K. Sarychev, “Surface plasmon excitation and correlation-induced localization-delocalization transition in semicontinuous metal films,” Phys. Rev. B72(11), 113102 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited