OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10269–10277

Three dimensional live cell lithography

Anna Linnenberger, Martha I. Bodine, Callie Fiedler, Justine J. Roberts, Stacey C. Skaalure, Joseph P. Quinn, Stephanie J. Bryant, Michael Cole, and Robert R. McLeod  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10269-10277 (2013)
http://dx.doi.org/10.1364/OE.21.010269


View Full Text Article

Enhanced HTML    Acrobat PDF (1210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate holographic optical trapping combined with step-and-repeat maskless projection stereolithography for fine control of 3D position of living cells within a 3D microstructured hydrogel. C2C12 myoblast cells were chosen as a demonstration platform since their development into multinucleated myotubes requires linear arrangements of myoblasts. C2C12 cells are positioned in the monomer solution with multiple optical traps at 1064 nm and then encapsulated by photopolymerization of monomer via projection of a 512x512 spatial light modulator illuminated at 405 nm. High 405 nm sensitivity and complete insensitivity to 1064 nm was enabled by a lithium acylphosphinate (LAP) salt photoinitiator. These wavelengths, in addition to brightfield imaging with a white light LED, could be simultaneously focused by a single oil immersion objective. Large lateral dimensions of the patterned gel/cell structure are achieved by x and y step-and-repeat process. Large thickness is achieved through multi-layer stereolithography, allowing fabrication of precisely-arranged 3D live cell scaffolds with micron-scale structure and millimeter dimensions. Cells are shown to retain viability after the trapping and encapsulation procedure.

© 2013 OSA

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(220.3740) Optical design and fabrication : Lithography
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 19, 2013
Revised Manuscript: April 4, 2013
Manuscript Accepted: April 6, 2013
Published: April 18, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Anna Linnenberger, Martha I. Bodine, Callie Fiedler, Justine J. Roberts, Stacey C. Skaalure, Joseph P. Quinn, Stephanie J. Bryant, Michael Cole, and Robert R. McLeod, "Three dimensional live cell lithography," Opt. Express 21, 10269-10277 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000). [CrossRef] [PubMed]
  2. S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007). [CrossRef] [PubMed]
  3. D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, “Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine,” IEEE Trans. Biomed. Eng.47(3), 290–300 (2000). [CrossRef] [PubMed]
  4. V. L. Tsang and S. N. Bhatia, “Three-dimensional tissue fabrication,” Adv. Drug Deliv. Rev.56(11), 1635–1647 (2004). [CrossRef] [PubMed]
  5. U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008). [CrossRef] [PubMed]
  6. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004). [CrossRef]
  7. K. T. Nguyen and J. L. West, “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials23(22), 4307–4314 (2002). [CrossRef] [PubMed]
  8. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009). [CrossRef] [PubMed]
  9. G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012). [CrossRef] [PubMed]
  10. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000). [CrossRef]
  11. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. Laczik, M. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express12(8), 1665–1670 (2004). [CrossRef] [PubMed]
  12. S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11(5), 439–457 (2000).
  13. H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996). [CrossRef] [PubMed]
  14. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuat. A.121, 113–120 (2005).
  15. R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012). [CrossRef] [PubMed]
  16. B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, and K. S. Anseth, “Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility,” Biomaterials30(35), 6702–6707 (2009). [CrossRef] [PubMed]
  17. A. S. Sawhney, C. P. Pathak, and J. A. Hubbell, “Bioerodible hydrogels based on photopolymerized poly (ethylene glycol)-co-poly (. alpha.-hydroxy acid) diacrylate macromers,” Macromolecules26(4), 581–587 (1993). [CrossRef]
  18. S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11, 439–457 (2000).
  19. C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26(11), 1211–1218 (2005). [CrossRef] [PubMed]
  20. N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, “The effect of photopolymerization on stem cells embedded in hydrogels,” Biomaterials30(3), 344–353 (2009). [CrossRef] [PubMed]
  21. A. C. Urness, M. C. Cole, K. K. Kamysiak, E. R. Moore, and R. R. McLeod “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light Sci. Appl. 2 (2013).
  22. E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited