OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10295–10300

Generation of two-dimensional plasmonic bottle beams

Patrice Genevet, Jean Dellinger, Romain Blanchard, Alan She, Marlene Petit, Benoit Cluzel, Mikhail A. Kats, Frederique de Fornel, and Federico Capasso  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 10295-10300 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1643 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By analogy to the three dimensional optical bottle beam, we introduce the plasmonic bottle beam: a two dimensional surface wave which features a lattice of plasmonic bottles, i.e. alternating regions of bright focii surrounded by low intensities. The two-dimensional bottle beam is created by the interference of a non-diffracting beam, a cosine-Gaussian beam, and a plane wave, thus giving rise to a non-diffracting complex intensity distribution. By controlling the propagation constant of the cosine-Gauss beam, the size and number of plasmonic bottles can be engineered. The two dimensional lattice of hot spots formed by this new plasmonic wave could have applications in plasmonic trapping.

© 2013 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: March 13, 2013
Revised Manuscript: April 9, 2013
Manuscript Accepted: April 9, 2013
Published: April 18, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Patrice Genevet, Jean Dellinger, Romain Blanchard, Alan She, Marlene Petit, Benoit Cluzel, Mikhail A. Kats, Frederique de Fornel, and Federico Capasso, "Generation of two-dimensional plasmonic bottle beams," Opt. Express 21, 10295-10300 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett.25(4), 191–193 (2000). [CrossRef] [PubMed]
  2. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun.225(4-6), 215–222 (2003). [CrossRef]
  3. D. Yelin, B. E. Bouma, and G. J. Tearney, “Generating an adjustable three-dimensional dark focus,” Opt. Lett.29(7), 661–663 (2004). [CrossRef] [PubMed]
  4. J. X. Pu, X. Y. Liu, and S. Nemoto, “Partially coherent bottle beams,” Opt. Commun.252(1-3), 7–11 (2005). [CrossRef]
  5. B. Ahluwalia, X. Yuan, and S. Tao, “Transfer of ‘pure’ on-axis spin angular momentum to the absorptive particle using self-imaged bottle beam optical tweezers system,” Opt. Express12(21), 5172–5177 (2004). [CrossRef] [PubMed]
  6. L. Isenhower, W. Williams, A. Dally, and M. Saffman, “Atom trapping in an interferometrically generated bottle beam trap,” Opt. Lett.34(8), 1159–1161 (2009). [CrossRef] [PubMed]
  7. P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett.35(13), 2164–2166 (2010). [CrossRef] [PubMed]
  8. P. Rodrigo, R. Eriksen, V. Daria, and J. Glueckstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express10(26), 1550–1556 (2002). [CrossRef] [PubMed]
  9. T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys.8(3), 43 (2006). [CrossRef]
  10. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007). [CrossRef]
  11. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  12. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun2, 469 (2011). [CrossRef] [PubMed]
  13. K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem13(11), 2639–2648 (2012). [CrossRef] [PubMed]
  14. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10(9), 3506–3511 (2010). [CrossRef] [PubMed]
  15. L. Huang, S. J. Maerkl, and O. J. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express17(8), 6018–6024 (2009). [CrossRef] [PubMed]
  16. J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss Plasmon beam: A localized long-range nondiffracting surface wave,” Phys. Rev. Lett.109(9), 093904 (2012). [CrossRef] [PubMed]
  17. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett.35(12), 2082–2084 (2010). [CrossRef] [PubMed]
  18. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011). [CrossRef] [PubMed]
  19. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett.107(12), 126804 (2011). [CrossRef] [PubMed]
  20. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett.36(16), 3191–3193 (2011). [CrossRef] [PubMed]
  21. C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys.112(10), 103107 (2012). [CrossRef]
  22. L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated Plasmon Beam: Nondiffracting versus Linearly Focused,” Phys. Rev. Lett.110(4), 046807 (2013). [CrossRef]
  23. C. E. Garcia-Ortiz, V. Coello, Z. Han, and S. I. Bozhevolnyi, “Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles,” Opt. Lett.38(6), 905–907 (2013). [CrossRef] [PubMed]
  24. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun.64(6), 491–495 (1987). [CrossRef]
  25. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), Vol. 1.
  26. L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B83(11), 115326 (2011). [CrossRef]
  27. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009). [CrossRef] [PubMed]
  28. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express13(10), 3777–3786 (2005). [CrossRef] [PubMed]
  29. A. E. Klein, A. Minovich, M. Steinert, N. Janunts, A. Tünnermann, D. N. Neshev, Y. S. Kivshar, and T. Pertsch, “Controlling plasmonic hot spots by interfering Airy beams,” Opt. Lett.37(16), 3402–3404 (2012). [CrossRef] [PubMed]
  30. D. B. Ruffner and D. G. Grier, “Optical conveyors: A class of active tractor beams,” Phys. Rev. Lett.109(16), 163903 (2012). [CrossRef] [PubMed]
  31. O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics7(2), 123–127 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Supplementary Material

» Media 1: AVI (7235 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited