OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10367–10375

Transmission statistics and focusing in single disordered samples

Matthieu Davy, Zhou Shi, Jing Wang, and Azriel Z. Genack  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 10367-10375 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1699 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show in microwave experiments and random matrix calculations that in samples with a large number of channels the statistics of transmission for different incident channels relative to the average transmission is determined by a single parameter, the participation number of the eigenvalues of the transmission matrix, M. Its inverse, M-1, is equal to the variance of relative total transmission of the sample, while the contrast in maximal focusing is equal to M. The distribution of relative total transmission changes from Gaussian to negative exponential over the range in which M-1 changes from 0 to 1. This provides a framework for transmission and imaging in single samples.

© 2013 OSA

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(290.7050) Scattering : Turbid media

ToC Category:
Coherence and Statistical Optics

Original Manuscript: March 6, 2013
Revised Manuscript: April 15, 2013
Manuscript Accepted: April 16, 2013
Published: April 19, 2013

Matthieu Davy, Zhou Shi, Jing Wang, and Azriel Z. Genack, "Transmission statistics and focusing in single disordered samples," Opt. Express 21, 10367-10375 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, “New method for a scaling theory of localization,” Phys. Rev. B22(8), 3519–3526 (1980). [CrossRef]
  2. V. I. Melnikov, “Distribution of resistivity probabilities of a finite, disordered system,” Pis'ma Z. Eksp. Teor. Fiz.32, 244–247 (1980).
  3. A. A. Abrikosov, “The paradox with the static conductivity of a one-dimensional metal,” Solid State Commun.37(12), 997–1000 (1981). [CrossRef]
  4. R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, “Observation of h/e Aharonov-Bohm oscillations in normal-metal rings,” Phys. Rev. Lett.54(25), 2696–2699 (1985). [CrossRef] [PubMed]
  5. B. L. Altshuler, P. A. Lee, and R. A. Webb, Mesoscopic Phenomena in Solids (Elsevier, Amsterdam, 1991).
  6. E. Abrahams, 50 years of Anderson Localization (World Scientific Publishing Co. Pte. Ltd., 2010).
  7. A. Z. Genack, “Optical transmission in disordered media,” Phys. Rev. Lett.58(20), 2043–2046 (1987). [CrossRef] [PubMed]
  8. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media: the effect of Brownian motion of scatterers,” Zeitschrift für Physik B65(4), 409–413 (1987). [CrossRef]
  9. P. A. Mello, E. Akkermans, and B. Shapiro, “Macroscopic approach to correlations in the electronic transmission and reflection from disordered conductors,” Phys. Rev. Lett.61(4), 459–462 (1988). [CrossRef] [PubMed]
  10. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett.61(7), 834–837 (1988). [CrossRef] [PubMed]
  11. J. de Boer, M. van Rossum, M. van Albada, T. Nieuwenhuizen, and A. Lagendijk, “Probability distribution of multiple scattered light measured in total transmission,” Phys. Rev. Lett.73(19), 2567–2570 (1994). [CrossRef] [PubMed]
  12. M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys.71(1), 313–371 (1999). [CrossRef]
  13. A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature404(6780), 850–853 (2000). [CrossRef] [PubMed]
  14. H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys.4(12), 945–948 (2008). [CrossRef]
  15. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446(7131), 52–55 (2007). [CrossRef] [PubMed]
  16. A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson Localization,” Phys. Today62(8), 24–29 (2009). [CrossRef]
  17. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling wave in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012). [CrossRef]
  18. I. M. Vellekoop and A. P. Mosk, “Universal Optimal Transmission of Light Through Disordered Materials,” Phys. Rev. Lett.101(12), 120601 (2008). [CrossRef] [PubMed]
  19. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010). [CrossRef] [PubMed]
  20. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010). [CrossRef]
  21. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109(20), 203901 (2012). [CrossRef] [PubMed]
  22. S. Tripathi, R. Paxman, T. Bifano, and K. C. Toussaint., “Vector transmission matrix for the polarization behavior of light propagation in highly scattering media,” Opt. Express20(14), 16067–16076 (2012). [CrossRef] [PubMed]
  23. M. Davy, Z. Shi, and A. Z. Genack, “Focusing through random media: eigenchannel participation number and intensity correlation,” Phys. Rev. B85(3), 035105 (2012). [CrossRef]
  24. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattering of incoherent light,” Nat. Photonics6(8), 549–553 (2012). [CrossRef]
  25. E. Abrahams, P. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in two dimension,” Phys. Rev. Lett.42(10), 673–676 (1979). [CrossRef]
  26. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  27. Y. Imry and R. Landauer, “Conductance viewed as transmission,” Rev. Mod. Phys.71(2), S306–S312 (1999). [CrossRef]
  28. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev.109(5), 1492–1505 (1958). [CrossRef]
  29. O. N. Dorokhov, “On the coexistence of localized and extended electronic states in the metallic phase,” Solid State Commun.51(6), 381–384 (1984). [CrossRef]
  30. P. A. Mello, P. Pereyra, and N. Kumar, “Macroscopic approach to multichannel disordered conductors,” Ann. Phys.181(2), 290–317 (1988). [CrossRef]
  31. A. D. Stone, P. Mello, K. A. Muttalib, and J.-L. Pichard, “Random Matrix Theory and Maximum Entropy Models for Disordered Conductors,” in Mesoscopic phenomena in solids, B. L. Altshuler, P. A. Lee, and R. A. Webb, eds. (North-Holland, 1991), pp. 369–448.
  32. D. J. Thouless, “Metallic resistance in thin wires,” Phys. Rev. Lett.39(18), 1167–1169 (1977). [CrossRef]
  33. Z. Shi and A. Z. Genack, “Transmission eigenvalues and the bare conductance in the crossover to Anderson localization,” Phys. Rev. Lett.108(4), 043901 (2012). [CrossRef] [PubMed]
  34. S. Zhang, Y. Lockerman, and A. Z. Genack, “Mesoscopic speckle,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(5), 051114 (2010). [CrossRef] [PubMed]
  35. Y. Imry, “Active transmission channels and universal conductance fluctuations,” Europhys. Lett.1(5), 249–256 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited