OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9230–9237

Nonlinear compensation and crosstalk suppression for 4 × 160.8Gb/s WDM PDM-QPSK signal with heterodyne detection

Junwen Zhang, Jianjun Yu, Nan Chi, Ze Dong, and Xinying Li  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9230-9237 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1847 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally investigate digital intra-channel nonlinear impairment compensation and inter-channel crosstalk suppression for 4 × 160.8-Gb/s wavelength division multiplexing (WDM) polarization division multiplexing quadrature phase shift keying (PDM-QPSK) transmission over 1300-km single-mode fiber-28 (SMF-28) on a 50-GHz grid with the spectral efficiency of 3.21b/s/Hz, adopting simplified heterodyne coherent detection. By using nonlinear compensation based on DBP with crosstalk suppression based on post filter and maximum likelihood sequence estimation (PF&MLSE), the BER has been improved from 1.0 × 10−3 to 3.5 × 10−4 for 4 × 160.8Gb/s WDM PDM-QPSK with heterodyne detection after 1300km SMF-28 transmission.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 24, 2013
Revised Manuscript: March 18, 2013
Manuscript Accepted: April 2, 2013
Published: April 8, 2013

Junwen Zhang, Jianjun Yu, Nan Chi, Ze Dong, and Xinying Li, "Nonlinear compensation and crosstalk suppression for 4 × 160.8Gb/s WDM PDM-QPSK signal with heterodyne detection," Opt. Express 21, 9230-9237 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008). [CrossRef] [PubMed]
  2. S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” J. of Sel. Top. Quantum Electron.16(5), 1164–1179 (2010). [CrossRef]
  3. X. Zhou and J. Yu, “Multi-Level, Multi-Dimensional Coding for High-Speed and High-Spectral-Efficiency Optical Transmission,” J. Lightwave Technol.27(16), 3641–3653 (2009). [CrossRef]
  4. J. Yu, Z. Dong, H.-C. Chien, Y. Shao, and N. Chi, “7-Tb/s (7 × 1.284 Tb/s/ch) Signal Transmission Over 320 km Using PDM-64QAM Modulation,” IEEE Photon. Technol. Lett.24(4), 264–266 (2012). [CrossRef]
  5. J. Zhang, Z. Dong, J. Yu, N. Chi, L. Tao, X. Li, and Y. Shao, “Simplified coherent receiver with heterodyne detection of eight-channel 50 Gb/s PDM-QPSK WDM signal after 1040 km SMF-28 transmission,” Opt. Lett.37(19), 4050–4052 (2012). [CrossRef] [PubMed]
  6. X. Li, J. Yu, N. Chi, Z. Dong, J. Zhang, and J. Yu, “The reduction of the LO number for heterodyne coherent detection,” Opt. Express20(28), 29613–29619 (2012). [CrossRef] [PubMed]
  7. R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, “QAM Coherent Subcarrier Multiplexing System Based on Heterodyne Detection using Intermediate Frequency Carrier Modulation,” in Proc. Of APMP, 165–168 (2008).
  8. M. Yoshida, H. Goto, K. Kasai, and M. Nakazawa, “64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection,” Opt. Express16(2), 829–840 (2008). [CrossRef] [PubMed]
  9. Z. Dong, X. Li, J. Yu, and J. Yu, “Generation and transmission of 8 × 112-Gb/s WDM PDM-16QAM on a 25-GHz grid with simplified heterodyne detection,” Opt. Express21(2), 1773–1778 (2013). [CrossRef] [PubMed]
  10. P. C. Schindler, R. Schmogrow, D. Hillerkuss, M. Nazarathy, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “Remote Heterodyne Reception of OFDM-QPSK as Downlink-Solution for Future Access Networks,” in Proc. Of OSA ANIC, AW4A.3 (2012).
  11. L. G. Kazovsky, “Optical Heterodyning Versus Optical Homodyning: A Comparison,” J. Opt. Commun.1, 18–24 (1985).
  12. E. Ip, “Nonlinear Compensation Using Backpropagation for Polarization-Multiplexed Transmission,” J. Lightwave Technol.28(6), 939–951 (2010). [CrossRef]
  13. E. Ip, Y. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel Nonlinearity Compensation for 3λx114-Gb/s DP-8QAM using Three Synchronized Sampling Scopes,” in Proc. Of OFC’2012, OM3A.6 (2012).
  14. E. F. Mateo, X. Zhou, and G. Li, “Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems,” Opt. Express19(2), 570–583 (2011). [CrossRef] [PubMed]
  15. S. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6 Gb/s PDM-16QAM OFDM Transmission over 10,181 km with Soft-Decision LDPC Coding and Nonlinearity Compensation,” in Proc. of OFC’2012, PDP5C.4 (2012).
  16. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express16(2), 880–888 (2008). [CrossRef] [PubMed]
  17. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation Efficient Nonlinear Equalizer Based on Correlated Digital Backpropagation,” in Proc. of OFC’2011, OWW3 (2011).
  18. J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, and J. C. Rasmussen, “Spectrally Efficient Quadrature Duobinary Coherent Systems With Symbol-Rate Digital Signal Processing,” J. Lightwave Technol.29(8), 1098–1104 (2011). [CrossRef]
  19. Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012). [CrossRef]
  20. H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(24), 3965–3971 (2012). [CrossRef]
  21. T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express21(5), 5833–5841 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited