OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9324–9332

Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9324-9332 (2013)
http://dx.doi.org/10.1364/OE.21.009324


View Full Text Article

Enhanced HTML    Acrobat PDF (2028 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comparative first-principles study of possible bismuth-related centers in TlCl and CsI crystals is performed and the results of computer modeling are compared with the experimental data. The calculated spectral properties of the bismuth centers suggest that the IR luminescence in TlCl:Bi is most likely caused by Bi + V Cl centers (Bi+ ion in thallium site and a negatively charged chlorine vacancy in the nearest anion site). On the contrary, Bi+ substitutional ions and Bi 2 + dimers are most likely responsible for the IR luminescence in CsI:Bi.

© 2013 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials

ToC Category:
Materials

History
Original Manuscript: February 4, 2013
Revised Manuscript: March 27, 2013
Manuscript Accepted: March 27, 2013
Published: April 9, 2013

Citation
V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, "Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals," Opt. Express 21, 9324-9332 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9324


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Blasse and A. Bril, “Investigations on Bi3+ activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968). [CrossRef]
  2. M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3012: Spectral and decay properties,” J. Appl. Phys.44(12), 5495–5499 (1973). [CrossRef]
  3. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Japan. J. Appl. Phys.40(3), L279–L281 (2001). [CrossRef]
  4. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett.82(19), 3325–3326 (2003). [CrossRef]
  5. E. M. Dianov, “Bi-doped glass optical fibers: Is it a new breakthrough in laser materials?” J. Non-Cryst. Solids355, 1861–1864 (2009). [CrossRef]
  6. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357, 2241–2245 (2011). [CrossRef]
  7. L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0 (1) center in KCl,” Phys. Rev. B27(9), 5332–5346 (1983). [CrossRef]
  8. M. Fockele, F. Lohse, J.-M. Spaeth, and R. H. Bartram, “Identification and optical properties of axial lead centres in alkaline-earth fluorides,” J. Phys.: Condens. Matter1(1), 13–26 (1989). [CrossRef]
  9. E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quant. Electronics40(4), 283–285 (2010). [CrossRef]
  10. J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express17(7), 5163–5169 (2009). [CrossRef] [PubMed]
  11. L. Su, H. Zhao, H. Li, L. Zheng, G. Ren, J. Xu, W. Ryba-Romanowski, R. Lisiecki, and P. Solarz, “Near-infrared ultrabroadband luminescence spectra properties of subvalent bismuth in CsI halide crystals,” Opt. Lett.36(23), 4551–4553 (2011). [CrossRef] [PubMed]
  12. L. Su, H. Zhao, H. Li, L. Zheng, X. Fan, X. Jiang, H. Tang, G. Ren, J. Xu, W. Ryba-Romanowski, R. Lisiecki, and P. Solarz, “Near-infrared photoluminescence spectra in Bi-doped CsI crystal: evidence for Bi-valence conversions and Bi ion aggregation,” Opt. Materials Express2(6), 757–764 (2012). [CrossRef]
  13. V. G. Plotnichenko, V. O. Sokolov, D. V. Philippovskiy, I. S. Lisitsky, M. S. Kouznetsov, K. S. Zaramenskikh, and E. M. Dianov, “Near-infrared luminescence in TlCl:Bi crystal,” Opt. Lett.38(3), 362–364 (2013). [CrossRef] [PubMed]
  14. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009). [CrossRef]
  15. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996). [CrossRef] [PubMed]
  16. http://qe-forge.org/projects/pslibrary
  17. http://theory.cm.utexas.edu/vtsttools/bader
  18. O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B12(8), 3060–3083 (1975). [CrossRef]
  19. http://elk.sourceforge.net
  20. J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B45(23), 13244–13249 (1992). [CrossRef]
  21. D. M. Ceperley and B. I. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett.45(7), 566–569 (1990). [CrossRef]
  22. A. D. Becke and E. R. Johnson, “A simple effective potential for exchange,” J. Chem. Phys.124(22), 221101 (2006). [CrossRef] [PubMed]
  23. F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett.102(22), 226401 (2009). [CrossRef] [PubMed]
  24. D. Koller, F. Tran, and P. Blaha, “Merits and limits of the modified Becke-Johnson exchange potential,” Phys. Rev. B83(19), 195134 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited