OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9491–9504

Compact dual-crystal optical parametric amplification for broadband IR pulse generation using a collinear geometry

Zuofei Hong, Qingbin Zhang, and Peixiang Lu  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9491-9504 (2013)
http://dx.doi.org/10.1364/OE.21.009491


View Full Text Article

Enhanced HTML    Acrobat PDF (1114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel compact dual-crystal optical parametric amplification (DOPA) scheme, collinearly pumped by a Ti:sapphire laser (0.8 μm), is theoretically investigated for efficiently generating broadband IR pulses at non-degenerate wavelengths (1.2 μm∼1.4 μm and 1.8 μm∼2.1 μm). By inserting a pair of barium fluoride (BaF2) wedges between two thin β-barium borate (BBO) crystals, the group velocity mismatch (GVM) between the three interacting pulses can be compensated simultaneously. In this case, the obtained signal spectrum centered at 1.3 μm is nearly 20% broader and the conversion efficiency is increased, but also the pulse contrast and beam quality are improved due to the better temporal overlap. Furthermore, sub-two-cycle idler pulses with carrier-envelope phase (CEP) fluctuation of sub-100-mrad root mean square (RMS) can be generated. Because a tunable few-cycle IR pulse with millijoule energy is attainable in this scheme, it will contribute to ultrafast community and be particularly useful as a driving or controlling field for the generation of ultrafast coherent x-ray supercontinuum.

© 2013 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 5, 2013
Revised Manuscript: March 23, 2013
Manuscript Accepted: March 31, 2013
Published: April 10, 2013

Citation
Zuofei Hong, Qingbin Zhang, and Peixiang Lu, "Compact dual-crystal optical parametric amplification for broadband IR pulse generation using a collinear geometry," Opt. Express 21, 9491-9504 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9491


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009). [CrossRef]
  2. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang, “Tailoring a 67 attosecond pulse through advantageous phase-mismatch,” Opt. Lett.37, 3891–3893 (2012). [CrossRef] [PubMed]
  3. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science320, 1614–1617 (2008). [CrossRef] [PubMed]
  4. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science314, 443–446 (2006). [CrossRef] [PubMed]
  5. E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phy. Rev. Lett.104, 233901 (2010). [CrossRef]
  6. P. Lan, E. J. Takahashi, and K. Midorikawa, “Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation,” Phy. Rev. A82, 053413 (2010). [CrossRef]
  7. S. Svensson, B. Eriksson, N. Mårtensson, G. Wendin, and U. Gelius, “Electron shake-up and correlation satellites and continuum shake-off distributions in X-ray photoelectron spectra of the rare gas atoms,” J. Electron Spectrosc. Relat. Phenom.47, 327 (1988). [CrossRef]
  8. S. X. Hu and L. A. Collins, “Attosecond pump probe: exploring ultrafast electron motion inside an atom,” Phy. Rev. Lett.96, 073004 (2006). [CrossRef]
  9. P. Lan, P. Lu, W. Cao, Y. Li, and X. Wang, “Isolated sub-100-as pulse generation via controlling electron dynamics,” Phy. Rev. A76, 011402(R) (2007). [CrossRef]
  10. Q. Li, P. Lu, P. Lan, W. Hong, and Q. Zhang, “Macroscopic effects on the broadband supercontinuum driven by an ω and ω/2 bichromatic laser pulse,” J. Phys. B: At. Mol. Opt. Phys.42, 165601 (2009). [CrossRef]
  11. E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent water window X ray by phase-matched high-order harmonic generation in neutral media,” Phy. Rev. Lett.101, 253901 (2008). [CrossRef]
  12. E. J. Takahashi, T. Kanai, and K. Midorikawa, “High-order harmonic generation by an ultrafast infrared pulse,” Appl. Phys. B100, 29–41 (2010). [CrossRef]
  13. T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, O. Tadas Balc̆iunas, D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science336, 1287–1292 (2012). [CrossRef] [PubMed]
  14. V. S. Yakovlev, M. Ivanov, and F. Krausz, “Enhanced phase-matching for generation of soft X-ray harmonics and attosecond pulses in atomic gases,” Opt. Express15, 15351–15364 (2007). [CrossRef] [PubMed]
  15. W. Hong, Q. Zhang, Z. Yang, and P. Lu, “Electron dynamic control for the quantum path in the midinfrared regime using a weak near-infrared pulse,” Phys. Rev. A80, 053407 (2009). [CrossRef]
  16. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74, 1–18 (2003). [CrossRef]
  17. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt.12, 013001 (2010). [CrossRef]
  18. J. Biegert, P. K. Bates, and O. Chalus, “New mid-infrared light sources,” IEEE J. Sel. Top. Quant. Electron.18, 531–540 (2012). [CrossRef]
  19. O. D. Mücke, D. Sidorov, P. Dombi, A. Pugžlys, A. Baltuška, S. Ališauskas, V. Smilgevic̆ius, J. Pocius, L. Giniūnas, R. Danielius, and N. Forget, “Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 μm” Opt. Lett.34, 118–120 (2009). [CrossRef] [PubMed]
  20. Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, and N. Karpowicz, “Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm,” Opt. Lett.37, 4973–4975 (2012). [CrossRef] [PubMed]
  21. G. Arisholm, “General analysis of group velocity effects in collinear optical parametric amplifiers and generators,” Opt. Express15, 6513–6527 (2007). [CrossRef] [PubMed]
  22. A. M. Siddiqui, G. Cirmi, D. Brida, F. X. Kärtner, and G. Cerullo, “Generation of <7 fs pulses at 800 nm from a blue-pumped optical parametric amplifier at degeneracy,” Opt. Lett.34, 3592–3594 (2009). [CrossRef] [PubMed]
  23. D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett.33, 741–743 (2008). [CrossRef] [PubMed]
  24. S. Hädrich, J. Rothhardt, F. Röser, T. Gottschall, J. Limpert, and A. Tünnermann, “Degenerate optical parametric amplifier delivering sub 30 fs pulses with 2GW peak power,” Opt. Express16, 19812–19820 (2008). [CrossRef] [PubMed]
  25. N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Sub-two-cycle, carrier-envelope phasestable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier,” Opt. Lett.37, 4182–4184 (2012). [CrossRef] [PubMed]
  26. O. Isaienko, E. Borguet, and P. Vöhringer, “High-repetition-rate near-infrared noncollinear ultrabroadband optical parametric amplification in KTiOPO4,” Opt. Lett.35, 3832–3834 (2010). [CrossRef] [PubMed]
  27. J. Piel, E. Riedle, L. Gundlach, R. Ernstorfer, and R. Eichberger, “Sub-20 fs visible pulses with 750 nJ energy from a 100 kHz noncollinear optical parametric amplifier,” Opt. Lett.31, 1289–1291 (2006). [CrossRef] [PubMed]
  28. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett.34, 2459–2461 (2009). [CrossRef] [PubMed]
  29. O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express16, 3949–3954 (2008). [CrossRef] [PubMed]
  30. G. Cirmi, D. Brida, C. Manzoni, M. Marangoni, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses in the near-infrared from a noncollinear optical parametric amplifier,” Opt. Lett.32, 2396–2398 (2007). [CrossRef] [PubMed]
  31. T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B70, S239–S246 (2000). [CrossRef]
  32. C. Zhang, P. Wei, Y. Huang, Y. Leng, Y. Zheng, Z. Zeng, R. Li, and Z. Xu, “Tunable phase-stabilized infrared optical parametric amplifier for high-order harmonic generation,” Opt. Lett.34, 2730–2732 (2009). [CrossRef] [PubMed]
  33. R. Danielius, A. Piskarskas, P. Di Trapani, A. Andreoni, C. Solcia, and P. Foggi, “Matching of group velocities by spatial walk-off in collinear three-wave interaction with tilted pulses,” Opt. Lett.21, 973–975 (1996). [CrossRef] [PubMed]
  34. O. Isaienko and E. Borguet, “Pulse-front matching of ultrabroadband near-infrared noncollinear optical parametric amplified pulses,” J. Opt. Soc. Am. B26, 965–972 (2009). [CrossRef]
  35. Q. Zhang, E. J. Takahashi, O. D. Mücke, P. Lu, and K. Midorikawa, “Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses,” Opt. Express19, 7190–7212 (2011). [CrossRef] [PubMed]
  36. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B14, 2543–2549 (1997). [CrossRef]
  37. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B87, 677–684 (2007). [CrossRef]
  38. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999)
  39. F. Costache, S. Eckert, and J. Reif, “Near-damage threshold femtosecond laser irradiation of dielectric surfaces: desorbed ion kinetics and defect dynamics,” Appl. Phys. A92, 897–902 (2008). [CrossRef]
  40. C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A79, 033818 (2009). [CrossRef]
  41. F Tavella, A Marcinkevičius, and F Krausz, “Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system,” New J. Phys.8, 219 (2006). [CrossRef]
  42. J. Moses, S. W. Huang, K. H. Hong, O. D. Mücke, E. L. Falcão-Filho, A. Benedick, F. Ö. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett.34, 1639–1641 (2009). [CrossRef] [PubMed]
  43. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun.144, 125–133 (1997). [CrossRef]
  44. I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B19, 2945–2956 (2002). [CrossRef]
  45. A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett.88, 133901 (2002). [CrossRef]
  46. O. D. Mücke, S. Ališauskas, A. J. Verhoef, Audrius Pugžlys, A. Baltuška, V. Smilgevic̆ius, J. Pocius, L. Giniūnas, R. Danielius, and N. Forget, “Self-compression of millijoule 1.5 μm pulses,” Opt. Lett.34, 2498–2500 (2009). [CrossRef] [PubMed]
  47. T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, Th. Metzger, A. Baltuška, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 μm,” Opt. Lett.31, 1103–1105 (2006). [CrossRef] [PubMed]
  48. G. Cirmi, C. Manzoni, D. Brida, S. De Silvestri, and G. Cerullo, “Carrier-envelope phase stable, few-optical-cycle pulses tunable from visible to near IR,” J. Opt. Soc. Am. B25, B62–B69 (2008). [CrossRef]
  49. F. Silva, P. K. Bates, A. Esteban-Martin, M. Ebrahim-Zadeh, and J. Biegert, “High-average-power, carrier-envelope phase-stable, few-cycle pulses at 2.1 μm from a collinear BiB3O6 optical parametric amplifier,” Opt. Lett.37, 933–935 (2012). [CrossRef] [PubMed]
  50. A. Thai, M. Hemmer, P. K. Bates, O. Chalus, and J. Biegert, “Sub-250-mrad, passively carrier-envelope-phase-stable mid-infrared OPCPA source at high repetition rate,” Opt. Lett.36, 3918–3920 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited