OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9514–9519

Light transmission in negative curvature hollow core fiber in extremely high material loss region

Anton N. Kolyadin, Alexey F. Kosolapov, Andrey D. Pryamikov, Alexander S. Biriukov, Victor G. Plotnichenko, and Evgeny M. Dianov  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9514-9519 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we demonstrate the light transmission in a spectral range of 2.5 to 7.9 µm through a silica negative curvature hollow core fiber (NCHCF) with a cladding consisting of eight capillaries. A separation between the cladding capillaries was introduced to remove the additional resonances in the transmission bands. The measured optical loss at 3.39 µm was about 50 dB/km under a few modes waveguide regime.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 22, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 6, 2013
Published: April 10, 2013

Anton N. Kolyadin, Alexey F. Kosolapov, Andrey D. Pryamikov, Alexander S. Biriukov, Victor G. Plotnichenko, and Evgeny M. Dianov, "Light transmission in negative curvature hollow core fiber in extremely high material loss region," Opt. Express 21, 9514-9519 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  2. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. European Opt. Soc.4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 . [CrossRef]
  3. A. Urich, R. R. J. Maier, B. J. Mangan, S. Renshaw, J. C. Knight, D. P. Hand, and J. D. Shephard, “Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre,” Opt. Express20(6), 6677–6684 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6677 . [CrossRef] [PubMed]
  4. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express19(19), 18470–18478 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18470 . [CrossRef] [PubMed]
  5. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011). [CrossRef]
  6. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18(5), 5142–5150 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5142 . [CrossRef] [PubMed]
  7. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core–shaped Kagome Hollow-Core PCF,” CLEO 2010, paper CPDB4.
  8. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1441 . [CrossRef] [PubMed]
  9. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express19(25), 25723–25728 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25723 . [CrossRef] [PubMed]
  10. F. Y. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11153 . [CrossRef] [PubMed]
  11. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express4(2), 193–205 (2013), http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-4-2-193 . [CrossRef] [PubMed]
  12. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express21(3), 3388–3399 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3388 . [CrossRef] [PubMed]
  13. A. D. Pryamikov and A. S. Biriukov, “Excitation of cyclic Sommerfeld waves and Wood anomalies under plane wave scattering from dielectric cylinder at oblique incidence,” Phys.- Usp. (to be published).
  14. E. B. Kryukova, V. G. Plotnichenko, and E. M. Dianov, “IR absorption spectra in high-purity silica glasses fabricated by different technologies,” Proc. SPIE4083, 71–80 (2000). [CrossRef]
  15. Optical constants of FUSED SILICA, http://refractiveindex.info/?group=GLASSES&material=F_SILICA
  16. T. P. White, R. C. McPhedran, C. M de Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett.27(22), 1977–1979 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-22-1977 . [CrossRef] [PubMed]
  17. T. Hidaka, T. Morikawa, and J. Shimada, “Hollow‐core oxide‐glass cladding optical fibers for middle‐infrared region,” J. Appl. Phys.52(7), 4467–4471 (1981), http://jap.aip.org/resource/1/japiau/v52/i7/p4467_s1 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited