OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9547–9555

An efficient broad-band mid-wave IR fiber optic light source: design and performance simulation

A. Barh, S. Ghosh, R. K. Varshney, and B. P. Pal  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9547-9555 (2013)
http://dx.doi.org/10.1364/OE.21.009547


View Full Text Article

Enhanced HTML    Acrobat PDF (1579 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Design of a mid-wave IR (MWIR) broad-band fiber-based light source exploiting degenerate four-wave mixing (D-FWM) in a meter long suitably designed highly nonlinear (NL) chalcogenide microstructured optical fiber (MOF) is reported. This superior FWM bandwidth (BW) was obtained through precise tailoring of the fiber’s dispersion profile so as to realize positive quartic dispersion at the pump wavelength. We consider an Erbium (Er3+) - doped continuous wave (CW) ZBLAN fiber laser emitting at 2.8 μm as the pump source with an average power of 5 W. Amplification factor as high as 25 dB is achievable in the 3 – 3.9 μm spectral range with average power conversion efficiency > 32%.

© 2013 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 6, 2013
Revised Manuscript: March 20, 2013
Manuscript Accepted: March 21, 2013
Published: April 10, 2013

Citation
A. Barh, S. Ghosh, R. K. Varshney, and B. P. Pal, "An efficient broad-band mid-wave IR fiber optic light source: design and performance simulation," Opt. Express 21, 9547-9555 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Barh, S. Ghosh, G. P. Agrawal, R. K. Varshney, I. D. Aggarwal, and B. P. Pal, “Design of an efficient mid-IR light source using chalcogenide holey fibers: a numerical study,” J. Opt.15(3), 035205 (2013). [CrossRef]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Review Articles - Nat. Photonics6(7), 423–431 (2012). [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics, Academic, San Diego, Calif., (2007).
  4. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003). [CrossRef]
  5. G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Linear optical characterization of chalcogenide glasses,” Opt. Commun.230(4-6), 331–336 (2004). [CrossRef]
  6. B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Review Articles - Nat. Photonics5, 141–148 (2011).
  7. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002). [CrossRef] [PubMed]
  8. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3-5 microm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 microm,” Opt. Lett.35(17), 2907–2909 (2010). [CrossRef] [PubMed]
  9. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett.30(15), 1980–1982 (2005). [CrossRef] [PubMed]
  10. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. B. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett.33(7), 660–662 (2008). [CrossRef] [PubMed]
  11. M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express15(15), 9458–9463 (2007). [CrossRef] [PubMed]
  12. C. S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long chalcogenide microstructured fiber,” Opt. Express19(26), B621–B627 (2011). [CrossRef] [PubMed]
  13. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St .J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28(22), 2225 (2003). [CrossRef] [PubMed]
  14. D. W. Hewak, “The promise of chalcogenides,” Nat. Photonics5(8), 474 (2011). [CrossRef]
  15. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater.3, 627–640 (2001).
  16. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010). [CrossRef] [PubMed]
  17. C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, “Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing,” Opt. Lett.6(10), 493–495 (1981). [CrossRef] [PubMed]
  18. G. Cappellini and S. Trillo, “Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects,” J. Opt. Soc. Am. B8(4), 824–838 (1991). [CrossRef]
  19. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers,” J. Lightwave Technol.27(12), 2095–2099 (2009). [CrossRef]
  20. R. Sen and Central Glass and Ceramic Research Institute, Kolkata, India, Personal Communication, (2013).
  21. T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions co-doped in borosilicate glass,” J. Non-Cryst. Solids354(17), 1883–1890 (2008). [CrossRef]
  22. G. Tao, S. Shabahang, E. H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett.37(13), 2751–2753 (2012). [CrossRef] [PubMed]
  23. J. S. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. D. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express18(25), 26760–26768 (2010). [CrossRef] [PubMed]
  24. C. Quentin, B. Laurent, H. Patrick, N. T. Nam, C. Thierry, R. Gilles, M. Achille, F. Julien, S. Frédéric, P. Thierry, O. Hervé, S. Jean-Christophe, and T. Johann, “Fabrication of low losses chalcogenide photonic crystal fibers by molding process,” Proc. SPIE7598, 75980O, 75980O-9 (2010). [CrossRef]
  25. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express13(10), 3728–3736 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited