OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9563–9572

Guided modes in magneto-optical waveguides and the role in resonant transmission

Teng-Fei Li, Tian-Jing Guo, Hai-Xu Cui, Mu Yang, Ming Kang, Qing-Hua Guo, and Jing Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9563-9572 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Magneto-optical (MO) effect can break the reciprocal propagation of an optical wave along a MO-metal interface. We show that this nonreciprocal property also influences the guided modes in metal-MO-metal waveguides. Especially, the field profiles of the guided modes are neither symmetric nor anti-symmetric, but asymmetric. We then study the resonant optical transmission through a thin metal film with subwavelength MO slits. Magnetic field changes the transmission spectra of the structure, and a MO-induced transparent window is open, where the MO medium becomes extremely anisotropic. The guided-mode mediated high transmission is associated with an asymmetric field distribution and a circling energy flux.

© 2013 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(260.5740) Physical optics : Resonance
(310.2790) Thin films : Guided waves

ToC Category:
Physical Optics

Original Manuscript: February 1, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: March 28, 2013
Published: April 10, 2013

Teng-Fei Li, Tian-Jing Guo, Hai-Xu Cui, Mu Yang, Ming Kang, Qing-Hua Guo, and Jing Chen, "Guided modes in magneto-optical waveguides and the role in resonant transmission," Opt. Express 21, 9563-9572 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Battula, S. Chen, Y. Lu, R. J. Knize, and K. Reinhardt, “Tuning the extraordinary optical transmission through subwavelength hole array by applying a magnetic field,” Opt. Lett.32, 2692–2694 (2007). [CrossRef] [PubMed]
  2. A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express15, 6612–6622 (2007). [CrossRef] [PubMed]
  3. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett.98, 077401 (2007). [CrossRef] [PubMed]
  4. Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008). [CrossRef]
  5. H. Yin and P. M. Hui, “Controlling enhanced transmission through semiconductor gratings with subwavelength slits by a magnetic field: Numerical and analytical results,” Appl. Phys. Lett.95, 011115 (2009). [CrossRef]
  6. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011). [CrossRef] [PubMed]
  7. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010). [CrossRef] [PubMed]
  8. H. Zhu and C. Jiang, “Nonreciprocal extraordinary optical transmission through subwavelength slits in metallic film,” Opt. Lett.36, 1308–1310 (2011). [CrossRef] [PubMed]
  9. J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett.89, 251115 (2006). [CrossRef]
  10. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100, 023902 (2008). [CrossRef] [PubMed]
  11. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008). [CrossRef] [PubMed]
  12. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačic̀, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett.100, 013905 (2008). [CrossRef] [PubMed]
  13. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83, 2845–2848 (1999). [CrossRef]
  14. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1289 (2007). [CrossRef]
  15. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007). [CrossRef]
  16. D. J. Bergman and Y. M. Strelniker, “Calculation of strong-field magnetoresistance in some periodic composites,” Phys. Rev. B49, 16256–16268 (1994). [CrossRef]
  17. Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B59, R12763–R12766 (1999). [CrossRef]
  18. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008). [CrossRef] [PubMed]
  19. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett.110, 013902 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited