OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9615–9623

Super resolution imaging achieved by using on-axis interferometry based on a Spatial Light Modulator

Anwar Hussain, J. L. Martínez, A. Lizana, and J. Campos  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9615-9623 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An interferometry based method to achieve resolution beyond the diffraction barrier is proposed. Object is illuminated with different tilted beams, generated by using a Spatial Light Modulator (SLM). In addition, some constant phases are also assigned to each tilted beam with the SLM display. Then, the object is simultaneously illuminated with all tilted beams, producing an on-axis interferometry scheme. An interferogram at the image plane is formed for each set of constant phases added to the tilted beams. Using proper selection of constant phases for each of the interferograms, the synthetic aperture can be calculated. During the post processing, we take the Fourier transforms of the each image and the portions of the spectrum are spatially shifted and combined to obtain synthesized spectrum whose inverse Fourier transform gives high resolution image.

© 2013 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.6640) Image processing : Superresolution
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Image Processing

Original Manuscript: December 5, 2012
Revised Manuscript: February 13, 2013
Manuscript Accepted: March 8, 2013
Published: April 10, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Anwar Hussain, J. L. Martínez, A. Lizana, and J. Campos, "Super resolution imaging achieved by using on-axis interferometry based on a Spatial Light Modulator," Opt. Express 21, 9615-9623 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim.9(S3suppl.), 426–438 (1952). [CrossRef]
  2. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit I,” J. Opt. Soc. Am.56(11), 1463–1471 (1966). [CrossRef]
  3. W. Lukoz, “Optical systems with resolving powers exceeding the classical limit II,” J. Opt. Soc. Am.57(7), 932–939 (1967). [CrossRef]
  4. M. Ueda and T. Sato, “Superresolution by holography,” J. Opt. Soc. Am.61(3), 418–419 (1971). [CrossRef]
  5. U. Mitsuhiro, S. Takuso, and K. Masato, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” J. Mod. Opt.20, 403–410 (1973).
  6. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express16(21), 17107–17118 (2008). [CrossRef] [PubMed]
  7. M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett.34(23), 3650–3652 (2009). [CrossRef] [PubMed]
  8. V. Mico, O. Limon, A. Gur, Z. Zalevsky, and J. García, “Transverse resolution improvement using rotating-grating time-multiplexing approach,” J. Opt. Soc. Am. A25(5), 1115–1129 (2008). [CrossRef] [PubMed]
  9. Ch. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett.81(17), 3143–3146 (2002). [CrossRef]
  10. A. Mudassar, A. R. Harvey, A. H. Greenaway, and J. D. C. Jones, “Resolution beyond classical limits with spatial frequency heterodyning,” Chin. Opt. Lett.4, 148 (2006).
  11. A. A. Mudassar and A. Hussain, “Super-resolution of active spatial frequency heterodyning using holographic approach,” Appl. Opt.49(17), 3434–3441 (2010). [CrossRef] [PubMed]
  12. A. Hussain and A. A. Mudassar, “Holography based super resolution,” Opt. Commun.285(9), 2303–2310 (2012). [CrossRef]
  13. A. Hussain, J. L. Martínez, and J. Campos, “Holographic superresolution using spatial light modulator,” JEOS-Rapid Publ.8, 13007 (2013).
  14. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  15. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Singe step superresolution by interferometric imaging,” Opt. Express12(12), 2589–2596 (2004). [CrossRef]
  16. A. Neumann, Y. Kuznetsova, and S. R. J. Brueck, “Structured illumination for the extension of imaging interferometric microscopy,” Opt. Express16(10), 6785–6793 (2008). [CrossRef] [PubMed]
  17. S. A. Alexandrov and D. D. Sampson, “Spatial information transmission beyond a systems diffraction limit using optical spectral encoding of the spatial frequency,” J. Opt. A, Pure Appl. Opt.10(2), 025304 (2008). [CrossRef]
  18. A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure superresolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett.36(6), 885–887 (2011). [CrossRef] [PubMed]
  19. V. Mico, Z. Zalevsky, and J. García, “Common-path phases shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun.281(17), 4273–4281 (2008). [CrossRef]
  20. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express16(4), 2555–2569 (2008). [CrossRef] [PubMed]
  21. P. Taylor, Theory and applications of Numerical analysis (Academic Press, 1974).
  22. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  23. A. Lizana, N. Martín, M. Estapé, E. Fernández, I. Moreno, A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel, “Influence of the incident angle in the performance of Liquid Crystal on Silicon displays,” Opt. Express17(10), 8491–8505 (2009). [CrossRef] [PubMed]
  24. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express16(21), 16711–16722 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited