OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9636–9642

Full color natural light holographic camera

Myung K. Kim  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9636-9642 (2013)
http://dx.doi.org/10.1364/OE.21.009636


View Full Text Article

Enhanced HTML    Acrobat PDF (1717 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Full-color, three-dimensional images of objects under incoherent illumination are obtained by a digital holography technique. Based on self-interference of two beam-split copies of the object’s optical field with differential curvatures, the apparatus consists of a beam-splitter, a few mirrors and lenses, a piezo-actuator, and a color camera. No lasers or other special illuminations are used for recording or reconstruction. Color holographic images of daylight-illuminated outdoor scenes and a halogen lamp-illuminated toy figure are obtained. From a recorded hologram, images can be calculated, or numerically focused, at any distances for viewing.

© 2013 OSA

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(090.1705) Holography : Color holography
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: February 26, 2013
Revised Manuscript: April 2, 2013
Manuscript Accepted: April 3, 2013
Published: April 11, 2013

Citation
Myung K. Kim, "Full color natural light holographic camera," Opt. Express 21, 9636-9642 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9636


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Hariharan, Optical Holography: Principles, Techniques, and Applications (Cambridge University, 1996).
  2. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef] [PubMed]
  3. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454–487 (1949).
  4. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53(12), 1377–1381 (1963). [CrossRef]
  5. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54(11), 1295–1301 (1964). [CrossRef]
  6. S. A. Benton, “Hologram Reconstructions with Extended Incoherent Sources,” J. Opt. Soc. Am. 59, 1545 (1969).
  7. S. A. Benton, “Holographic displays - a review,” Opt. Eng. 14, 402–407 (1975).
  8. H. M. A. El-Sum and P. Kirkpatrick, “Microscopy by reconstructed wavefronts,” Phys. Rev. 85, 763 (1952).
  9. E. N. Leith and J. Upatniek, “Holography with Achromatic-Fringe Systems,” J. Opt. Soc. Am. 57(8), 975 (1967). [CrossRef]
  10. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999). [CrossRef] [PubMed]
  11. G. Cochran, “New method of making fresnel transforms with incoherent light,” J. Opt. Soc. Am. 56(11), 1513 (1966). [CrossRef]
  12. S. G. Kim, B. Lee, and E. S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt. 36(20), 4784–4791 (1997). [CrossRef] [PubMed]
  13. G. Sirat and D. Psaltis, “Conoscopic Holography,” Opt. Lett. 10(1), 4–6 (1985). [CrossRef] [PubMed]
  14. L. M. Mugnier and G. Y. Sirat, “On-axis conoscopic holography without a conjugate image,” Opt. Lett. 17(4), 294–296 (1992). [CrossRef] [PubMed]
  15. T.-C. Poon, M. H. Wu, K. Shinoda, and T. Suzuki, “Optical scanning holography,” Proc. IEEE 84(5), 753–764 (1996). [CrossRef]
  16. T. C. Poon, “Optical Scanning Holography - A Review of Recent Progress,” J. Opt. Soc. Korea 13(4), 406–415 (2009). [CrossRef]
  17. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  18. C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point diffraction interferometer,” Opt. Express 13(6), 1885–1891 (2005). [CrossRef] [PubMed]
  19. V. Micó, J. García, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34(10), 1492–1494 (2009). [CrossRef] [PubMed]
  20. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007). [CrossRef] [PubMed]
  21. J. Rosen and G. Brooker, “Fluorescence incoherent color holography,” Opt. Express 15(5), 2244–2250 (2007). [CrossRef] [PubMed]
  22. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008). [CrossRef]
  23. M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37(13), 2694–2696 (2012). [CrossRef] [PubMed]
  24. M. K. Kim, “Incoherent digital holographic adaptive optics,” Appl. Opt. 52(1), A117–A130 (2013). [CrossRef] [PubMed]
  25. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  26. J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27(16), 1403–1405 (2002). [CrossRef] [PubMed]
  27. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011). [CrossRef] [PubMed]
  28. M. Levoy, “Light fields and computational imaging,” Computer 39(8), 46–55 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (33329 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited