OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9691–9702

Multi-band metamaterial absorber based on the arrangement of donut-type resonators

Jin Woo Park, Pham Van Tuong, Joo Yull Rhee, Ki Won Kim, Won Ho Jang, Eun Ha Choi, Liang Yao Chen, and YoungPak Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9691-9702 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2212 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose multi-band metamaterial absorbers at microwave frequencies. The design, the analysis, the fabrication, and the measurement of the absorbers working in multiple bands are presented. The numerical simulations and the experiments in the microwave anechoic chamber were performed. The metamaterial absorbers consist of an delicate arrangement of donut-shape resonators with different sizes and a metallic background plane, separated by a dielectric. The near-perfect absorptions of dual, triple and quad peaks are persistent with polarization independence, and the effect of angle of incidence for both TE and TM modes was also elucidated. It was also found that the multiple-reflection theory was not suitable for explaining the absorption mechanism of our investigated structures. The results of this study are promising for the practical applications.

© 2013 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: January 9, 2013
Revised Manuscript: March 16, 2013
Manuscript Accepted: April 2, 2013
Published: April 11, 2013

Jin Woo Park, Pham Van Tuong, Joo Yull Rhee, Ki Won Kim, Won Ho Jang, Eun Ha Choi, Liang Yao Chen, and YoungPak Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Opt. Express 21, 9691-9702 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  2. D. Cheng, H. Chen, N. Zhang, J. Xie, and L. Deng, “Numerical study of a dualband negative index material with polarization independence in the middle infrared regime,” J. Opt. Soc. Am. B30(1), 224–228 (2013). [CrossRef]
  3. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express11(7), 755–760 (2003). [CrossRef] [PubMed]
  4. S. Y. Chiam, R. J. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett.97(19), 191906 (2010). [CrossRef]
  5. L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett.96(16), 164101 (2010). [CrossRef]
  6. R. J. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010). [CrossRef] [PubMed]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  8. P. V. Tuong, J. W. Park, V. D. Lam, K. W. Kim, H. Cheong, W. H. Jang, and Y. P. Lee, “Simplified perfect absorber structure,” Comput. Mater. Sci.61, 243–247 (2012). [CrossRef]
  9. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011). [CrossRef]
  10. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011). [CrossRef] [PubMed]
  11. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012). [CrossRef]
  12. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012). [CrossRef]
  13. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19(22), 21155–21162 (2011). [CrossRef] [PubMed]
  14. B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010). [CrossRef]
  15. H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B86(20), 205104 (2012). [CrossRef]
  16. H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012). [CrossRef]
  17. J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process.108(2), 329–335 (2012). [CrossRef]
  18. H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys.45(20), 205101 (2012). [CrossRef]
  19. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  20. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103 (2011).
  21. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012). [CrossRef] [PubMed]
  22. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express20(25), 27756–27765 (2012). [CrossRef] [PubMed]
  23. F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech.60(10), 3013–3022 (2012). [CrossRef]
  24. D. V. Brazhnikov, A. V. Taichenachev, and V. I. Yudin, “Polarization method for controlling a sign of electromagnetically-induced transparency/absorption resonances,” Eur. Phys. J. D63(3), 315–325 (2011). [CrossRef]
  25. H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express20(21), 24002–24009 (2012). [CrossRef] [PubMed]
  26. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  27. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009). [CrossRef]
  28. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  29. Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express18(22), 23458–23465 (2010). [CrossRef] [PubMed]
  30. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009). [CrossRef]
  31. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005). [CrossRef] [PubMed]
  32. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012). [CrossRef] [PubMed]
  33. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010). [CrossRef]
  34. J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012). [CrossRef]
  35. P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan, “Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016604 (2009). [CrossRef] [PubMed]
  36. Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited