OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9703–9710

Mechanisms of plasmon-enhanced femtosecond laser nanoablation of silicon

Alexandre Robitaille, Étienne Boulais, and Michel Meunier  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9703-9710 (2013)
http://dx.doi.org/10.1364/OE.21.009703


View Full Text Article

Enhanced HTML    Acrobat PDF (1856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform plasmon-enhanced femtosecond laser ablation of silicon using gold nanorods to produce sub-diffraction limit features. While the observed hole shape seems inconsistent with calculated field distribution, we show that using a carrier diffusion-based model, both shape and depth of the nanoholes can be reliably explained. The laser energy is first deposited into electron-hole pairs that are created in the nanostructure’s enhanced near-field. Those carriers then diffuse and transfer their energy to the silicon lattice, producing ablation. Increased importance of the carrier diffusion process is shown to arise from the extreme localization of the deposited energy around the nanostructure, due to the plasmonic effect. The characteristic shape of holes is revealed as a striking signature of the screened charge carriers-phonon coupling that is shown to channel the heat transfer to the lattice and control ablation.

© 2013 OSA

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Laser Microfabrication

History
Original Manuscript: January 3, 2013
Revised Manuscript: March 18, 2013
Manuscript Accepted: March 21, 2013
Published: April 11, 2013

Citation
Alexandre Robitaille, Étienne Boulais, and Michel Meunier, "Mechanisms of plasmon-enhanced femtosecond laser nanoablation of silicon," Opt. Express 21, 9703-9710 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9703


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Plech, P. Leiderer, and J. Boneberg, “Femtosecond laser near field ablation,” Laser & Photonics Rev.3, 435–451 (2009). [CrossRef]
  2. D. Eversole, B. Lukyanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A89, 283–291 (2007). [CrossRef]
  3. N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology18, 305703 (2007). [CrossRef]
  4. R. K. Harrison and A. Ben-Yakar, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate,” Opt. Express18, 22556–22571 (2010). [CrossRef] [PubMed]
  5. J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, and G. Schatz, “Optical near-fields of triangular nanostructures,” Appl. Phys. A89, 299–303 (2007). [CrossRef]
  6. P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci.254, 794–798 (2007). [CrossRef]
  7. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999).
  8. E. Boulais, A. Robitaille, P. Desjeans-Gauthier, and M. Meunier, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: comment,” Opt. Express19, 6177–6178 (2011). [CrossRef] [PubMed]
  9. Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Chem. Phys. Lett.474, 146–152 (2009). [CrossRef]
  10. M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys.68, 1272–1281 (1990). [CrossRef]
  11. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7, 196–198 (1982). [CrossRef] [PubMed]
  12. S. Besner, J.-Y. Degorce, A. V. Kabashin, and M. Meunier, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” in Proc. SPIE Int. Soc. Opt. Eng., Vol. 5578 (SPIE, 2004) pp. 554–558.
  13. P. Kekicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir10, 1584–1591 (1994). [CrossRef]
  14. L. J. Lewis and D. Perez, “Laser ablation with short and ultrashort laser pulses: Basic mechanisms from molecular-dynamics simulations,” Appl. Surf. Sci.255, 5101–5106 (2009). [CrossRef]
  15. H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci.197–198, 839–844 (2002). [CrossRef]
  16. R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998). [CrossRef]
  17. P. Lorazo, L. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73, 134108 (2006). [CrossRef]
  18. H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-m picosecond laser pulses,” Phys. Rev. B35, 8166–8176 (1987). [CrossRef]
  19. J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer48, 501–509 (2005). [CrossRef]
  20. T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys.92, 4918–4925 (2002). [CrossRef]
  21. D. P. Korfiatis, K.-A. T. Thoma, and J. C. Vardaxoglou, “Conditions for femtosecond laser melting of silicon,” J. Phys. D40, 6803–6808 (2007). [CrossRef]
  22. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27, 985–1009 (1983). [CrossRef]
  23. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett.90, 191104 (2007). [CrossRef]
  24. E. J. Yoffa, “Dynamics of dense laser-induced plasmas,” Phys. Rev. B21, 2415–2425 (1980). [CrossRef]
  25. D. Agassi, “Phenomenological model for pisosecond-pulse laser annealing of semiconductors,” J. Appl. Phys.55, 4376–4383 (1984). [CrossRef]
  26. J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B26, 2147–2158 (1982). [CrossRef]
  27. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61, 2643–2650 (2000). [CrossRef]
  28. T. Sjodin, H. Petek, and H.-l. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett.81, 5664–5667 (1998). [CrossRef]
  29. A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B66, 165217 (2002). [CrossRef]
  30. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14, 2716–2722 (1997). [CrossRef]
  31. T. Crawford, A. Borowiec, and H. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A80, 1717–1724 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited