OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9813–9823

Vortical light bullets in second-harmonic-generating media supported by a trapping potential

Hidetsugu Sakaguchi and Boris A. Malomed  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9813-9823 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1080 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a three-dimensional (3D) model of optical media with the quadratic (χ(2)) nonlinearity and an effective 2D isotropic harmonic-oscillator (HO) potential. While it is well known that 3D χ(2) solitons with embedded vorticity (“vortical light bullets”) are unstable in the free space, we demonstrate that they have a broad stability region in the present model, being supported by the HO potential against the splitting instability. The shape of the vortical solitons may be accurately predicted by the variational approximation (VA). They exist above a threshold value of the total energy (norm) and below another critical value, which determines a stability boundary. The existence threshold vanishes is a part of the parameter space, depending on the mismatch parameter, which is explained by means of the comparison with the 2D counterpart of the system. Above the stability boundary, the vortex features shape oscillations, periodically breaking its axisymmetric form and restoring it. Collisions between vortices moving in the longitudinal direction are studied too. The collision is strongly inelastic at relatively small values of the velocities, breaking the two colliding vortices into three, with the same vorticity. The results suggest a possibility of the creation of stable 3D optical solitons with the intrinsic vorticity.

© 2013 OSA

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: February 28, 2013
Revised Manuscript: March 18, 2013
Manuscript Accepted: March 22, 2013
Published: April 12, 2013

Hidetsugu Sakaguchi and Boris A. Malomed, "Vortical light bullets in second-harmonic-generating media supported by a trapping potential," Opt. Express 21, 9813-9823 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron.28, 1691–1740 (1996). [CrossRef]
  2. C. Etrich, F. Lederer, B. A. Malomed, T. Peschel, and U. Peschel, “Optical solitons in media with a quadratic nonlinearity,” Progr. Opt.41, 483–568 (2000). [CrossRef]
  3. A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep.370, 63–235 (2002). [CrossRef]
  4. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quant. Semicl. Opt.7, R53–R72 (2005). [CrossRef]
  5. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  6. A. A. Kanashov and A. M. Rubenchik, “On diffraction and dispersion effect on three wave interaction,” Physica D4, 122–134 (1981). [CrossRef]
  7. D. Mihalache, “Linear and nonlinear light bullets: Recent theoretical and experimental studies,” Rom. J. Phys.57, 352–371 (2012).
  8. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74, 5036–5039 (1995). [CrossRef] [PubMed]
  9. B. A. Malomed, P. Drummond, H. He, A. Berntson, D. Anderson, and M. Lisak, “Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity,” Phys. Rev. E56, 4725–4735 (1997). [CrossRef]
  10. D. V. Skryabin and W. J. Firth, “Generation and stability of optical bullets in quadratic nonlinear media,” Opt. Commun.148, 79–84 (1998). [CrossRef]
  11. D. Mihalache, D. Mazilu, J. Dorring, and L. Torner, “Elliptical light bullets,” Opt. Commun.159, 129–138 (1999). [CrossRef]
  12. D. Mihalache, D. Mazilu, L.-C. Crasovan, L. Torner, B. A. Malomed, and F. Lederer, “Three-dimensional walking spatiotemporal solitons in quadratic media,” Phys. Rev. E62, 7340–7347 (2000). [CrossRef]
  13. X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett.82, 4631–4634 (1999). [CrossRef]
  14. X. Liu, K. Beckwitt, and F. Wise, “Two-dimensional optical spatiotemporal solitons in quadratic media,” Phys. Rev. E62, 1328–1340 (2000). [CrossRef]
  15. H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep.523, 61–126 (2013). [CrossRef]
  16. F. A. Bovino, M. Braccini, and C. Sibilia, “Orbital angular momentum in noncollinear second-harmonic generation by off-axis vortex beams,” J. Opt. Soc. A, B28, 2806–2811 (201si1).
  17. W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett.79, 2450–2453 (1997). [CrossRef]
  18. L. Torner and D. V. Petrov, “Azimuthal instabilities and self-breaking of beams into sets of solitons in bulk second-harmonic generation,” Electron. Lett.33, 608–610 (1997). [CrossRef]
  19. D. V. Skryabin and W. J. Firth, “Instabilities of higher-order parametric solitons: Filamentation versus coalescence,” Phys. Rev. E58, R1252–R1255 (1998). [CrossRef]
  20. J. P. Torres, J. M. Soto-Crespo, L. Torner, and D. V. Petrov, “Solitary-wave vortices in quadratic nonlinear media,” J. Opt. Soc. Am. B15, 625–627 (1998). [CrossRef]
  21. D. V. Petrov, L. Torner, J. Martorell, R. Vilaseca, J. P. Torres, and C. Cojocaru, “Observation of azimuthal modulational instability and formation of patterns of optical solitons in a quadratic nonlinear crystal,” Opt. Lett.23, 1444–1446 (1998). [CrossRef]
  22. J. P. Torres, J. M. Soto-Crespo, L. Torner, and D. V. Petrov, “Solitary-wave vortices in type II second-harmonic generation,” Opt. Commun.149, 77–83 (1998). [CrossRef]
  23. G. Molina-Terriza, E. M. Wright, and L. Torner, “Propagation and control of noncanonical optical vortices,” Opt. Lett.26, 163–165 (2001). [CrossRef]
  24. V. I. Kruglov, Y. A. Logvin, and V. M. Volkov, “The theory of spiral laser-beams in nonlinear media,” J. Mod. Opt.39, 2277–2291 (1992). [CrossRef]
  25. C. J. Pethick and H. Smith, Bose-Einstein condensate in dilute gas (Cambridge University Press, 2008). [CrossRef]
  26. F. Dalfovo and S. Stringari, “Bosons in anisotropic traps: Ground state and vortices,” Phys. Rev. A53, 2477–2485 (1996). [CrossRef] [PubMed]
  27. R. J. Dodd, “Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of Bose-Einstein condensates,” J. Res. Natl. Inst. Stand. Technol.101, 545–552 (1996). [CrossRef]
  28. T. J. Alexander and L. Bergé, “Ground states and vortices of matter-wave condensates and optical guided waves,” Phys. Rev. E65, 026611 (2002). [CrossRef]
  29. L. D. Carr and C. W. Clark, “Vortices in attractive Bose-Einstein condensates in two dimensions,” Phys. Rev. Lett.97, 010403 (2006). [CrossRef] [PubMed]
  30. D. Mihalache, D. Mazilu, B. A. Malomed, and F. Lederer, “Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction,” Phys. Rev. A73, 043615 (2006). [CrossRef]
  31. L. D. Carr and C. W. Clark, “Vortices and ring solitons in Bose-Einstein condensates,” Phys. Rev. A74, 043613 (2006). [CrossRef]
  32. G. Herring, L. D. Carr, R. Carretero-González, P. G. Kevrekidis, and D. J. Frantzeskakis, “Radially symmetric nonlinear states of harmonically trapped Bose-Einstein condensates,” Phys. Rev. A77, 043607 (2008). [CrossRef]
  33. H. Sakaguchi and B. A. Malomed, “Stabilizing single- and two-color vortex beams in quadratic media by a trapping potential,” J. Opt. Soc. Am. B29, 2741–2748 (2012). [CrossRef]
  34. F. Du, Y. W. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.85, 2181–2183 (2004). [CrossRef]
  35. F. Luan, A. K. George, T. D. Hedeley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29, 2369–2371 (2004). [CrossRef] [PubMed]
  36. P. D. Drummond, K. V. Kheruntsyan, and H. He, “Coherent molecular solitons in Bose-Einstein condensates,” Phys. Rev. Lett.81, 3055–3058 (1998). [CrossRef]
  37. D. J. Heinzen, R. Wynar, P. D. Drummond, and K. V. Kheruntsyan, “Superchemistry: dynamics of coupled atomic and molecular Bose-Einstein condensates,” Phys. Rev. Lett.84, 5029–5033 (2000). [CrossRef] [PubMed]
  38. J. J. Hope and M. K. Olsen, “Quantum superchemistry: Dynamical quantum effects in coupled atomic and molecular Bose-Einstein condensates,” Phys. Rev. Lett.86, 3220–3223 (2001). [CrossRef] [PubMed]
  39. T. Hornung, S. Gordienko, R. de Vivie-Riedle, and B. J. Verhaar, “Optimal conversion of an atomic to a molecular Bose-Einstein condensate,” Phys. Rev. A66, 043607 (2002). [CrossRef]
  40. D. L. Feder, C. W. Clark, and B. I. Schneider, “Vortex stability of interacting Bose-Einstein condensates confined in anisotropic harmonic traps,” Phys. Rev. Lett.82, 4956 (1999). [CrossRef]
  41. I. N. Towers, B. A. Malomed, and F. W. Wise, “Light bullets in quadratic media with normal dispersion at the second harmonic,” Phys. Rev. Lett.90, 123902 (2003). [CrossRef] [PubMed]
  42. Z. Y. Xu, Y. V. Kartashov, L. C. Crasovan, D. Mihalache, and L. Torner, “Multicolor vortex solitons in two-dimensional photonic lattices,” Phys. Rev. E71, 016616 (2005). [CrossRef]
  43. B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials”. Europhys. Lett.63, 642–648 (2003). [CrossRef]
  44. J. Yang and Z. H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett.28, 2094–2096 (2003). [CrossRef] [PubMed]
  45. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice,” Phys. Rev. E70, 055603 (2004). [CrossRef]
  46. D. Mihalache, D. Mazilu, L. C. Crasovan, I. Towers, B. A. Malomed, A. V. Buryak, L. Torner, and F. Lederer, “Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities,” Phys. Rev. E66, 016613 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited