OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9862–9874

How to display data by color schemes compatible with red-green color perception deficiencies

Matthias Geissbuehler and Theo Lasser  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9862-9874 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (12718 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Visualization of data concerns most scientists. The use of color is required in order to display multidimensional information. In addition, color encoding a univariate image can improve the interpretation significantly. However up to 10% of the adult male population are affected by a red-green color perception deficiency which hampers the correct interpretation and appreciation of color encoded information. This work attempts to give guidelines on how to display a given dataset in a balanced manner. Three novel color maps are proposed providing readers with normal color perception a maximum of color contrast while being a good compromise for readers with color perception deficiencies.

© 2013 OSA

OCIS Codes
(000.3110) General : Instruments, apparatus, and components common to the sciences
(000.4930) General : Other topics of general interest
(100.2000) Image processing : Digital image processing
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(170.6960) Medical optics and biotechnology : Tomography
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: February 11, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: March 31, 2013
Published: April 12, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Matthias Geissbuehler and Theo Lasser, "How to display data by color schemes compatible with red-green color perception deficiencies," Opt. Express 21, 9862-9874 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. D. Bergman, B. E. Rogowitz, and L. A. Treinish, “A rule-based tool for assisting colormap selection,” IEEE T Vis Comput Gr, 1070–2385/95 (1995).
  2. H. Levkowitz and G. T. Herman, “Color scales for image data,” IEEE Comput Graph12, 72–80 (1992). [CrossRef]
  3. H. Levkowitz, “Perceptual steps along color scales,” Int J Imag Syst Tech7, 97–101 (1996). [CrossRef]
  4. C. G. Healey, “Choosing effective colours for data visualization,” IEEE T Vis Comput Gr pp. 263–270 (1996).
  5. B. E. Rogowitz and L. A. Treinish, “Data visualization: the end of the rainbow,” IEEE Spectrum35, 52–59 (1998). [CrossRef]
  6. S. Silva, J. Madeira, and B. Santos, “There is more to color scales than meets the eye: A review on the use of color in visualization,” IEEE Infor Vis pp. 943–950 (2007).
  7. S. Silva, B. Sousa Santos, and J. Madeira, “Using color in visualization: A survey,” IEEE Comput Graph35, 320–333 (2011). [CrossRef]
  8. W. Swanson and J. Cohen, “Color vision,” Ophthalmol Clin North Am16, 179–203 (2003). [CrossRef] [PubMed]
  9. A. Light and P. Bartlein, “The end of the rainbow? color schemes for improved data graphics,” Eos T Am Geophys Un85(40):385 (2004). [CrossRef]
  10. H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J Opt Soc Am A14, 2647–2655 (1997). [CrossRef]
  11. B. Dougherty and A. Wade, “Vischeck,” http://www.vischeck.com/ (2006).
  12. National Institutes of Health, “ImageJ,” http://rsb.info.nih.gov/ij/ (2012).
  13. M. Simunovic, “Colour vision deficiency,” Eye24, 747–755 (2010). [CrossRef]
  14. M. Okabe and K. Ito, “Color Universal Design (CUD): How to make figures and presentations that are friendly to colorblind people,” http://jfly.iam.u-tokyo.ac.jp/color/ (2008).
  15. G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Trans Image Process6, 901–932 (1997). [CrossRef] [PubMed]
  16. C. Solomon and T. Breckon, Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab (Wiley, 2011), 1st ed.
  17. G. Kindlmann, E. Reinhard, and S. Creem, “Face-based luminance matching for perceptual colormap generation,” IEEE T Vis Comput Gr pp. 299–306 (2002).
  18. C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).
  19. J. A. Ross, “Colour-blindness: how to alienate a grant reviewer,” Nature445, 593–593 (2007). [CrossRef] [PubMed]
  20. C. Miall, “Readers see red over low-impact graphics,” Nature445, 147–147 (2007). [CrossRef] [PubMed]
  21. W. Becker, A. Bergmann, M. A. Hink, K. Knig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc Res Techniq63, 58–66 (2003). [CrossRef]
  22. T. T W J Gadella, T. Jovin, and R. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale,” Biophys Chem48, 221–239 (1993). [CrossRef]
  23. L. W. MacDonald, “Using color effectively in computer graphics,” IEEE Comp Graph19, 20–35 (1999). [CrossRef]
  24. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt Lett31, 2450–2452 (2006). [CrossRef] [PubMed]
  25. T. Bolmont, A. Bouwens, M. Villiger, C. Pache, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-Amyloidosis with extended-focus optical coherence microscopy,” J Neurosci32, 14548–14556 (2012). [CrossRef] [PubMed]
  26. S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Optical Nanoscopy1, 4 (2012). [CrossRef]
  27. Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012). [CrossRef] [PubMed]
  28. M. Geissbuehler, Z. Kadlecova, H.-A. Klok, and T. Lasser, “Assessment of transferrin recycling by Triplet Lifetime Imaging in living cells,” Biomed Opt Express3, 2526–2536 (2012).
  29. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited