OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9947–9958

Design of a full-dynamic-range balanced detection heterodyne gyroscope with common-path configuration

Chu-En Lin, Chih-Jen Yu, and Chii-Chang Chen  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9947-9958 (2013)
http://dx.doi.org/10.1364/OE.21.009947


View Full Text Article

Enhanced HTML    Acrobat PDF (1380 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article, we propose an optical heterodyne common-path gyroscope which has common-path configuration and full-dynamic range. Different from traditional non-common-path optical heterodyne technique such as Mach-Zehnder or Michelson interferometers, we use a two-frequency laser light source (TFLS) which can generate two orthogonally polarized light with a beat frequency has a common-path configuration. By use of phase measurement, this optical heterodyne gyroscope not only has the capability to overcome the drawback of the traditional interferometric fiber optic gyro: lack for full-dynamic range, but also eliminate the total polarization rotation caused by SMFs. Moreover, we also demonstrate the potential of miniaturizing this gyroscope as a chip device. Theoretically, if we assume that the wavelength of the laser light is 1550nm, the SMFs are 250m in length, and the radius of the fiber ring is 3.5cm, the bias stability is 0.872 deg/hr.

© 2013 OSA

OCIS Codes
(040.2840) Detectors : Heterodyne
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5790) Instrumentation, measurement, and metrology : Sagnac effect

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 25, 2013
Revised Manuscript: March 9, 2013
Manuscript Accepted: April 4, 2013
Published: April 15, 2013

Citation
Chu-En Lin, Chih-Jen Yu, and Chii-Chang Chen, "Design of a full-dynamic-range balanced detection heterodyne gyroscope with common-path configuration," Opt. Express 21, 9947-9958 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9947


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Sagnac, “L'éther lumineux démontré par l'effet du vent du vent relatif d'éther dans un interféromètre en rotation uniforme,” C. R. Acad. Sci.95, 708–710 (1913).
  2. E. J. Post, “Sagnac effect,” Mod. Phys.39(2), 475–493 (1967). [CrossRef]
  3. M. Li, Q. Tian, E. Y. Zhang, M. Zhang, and Y. B. Laio, “A novel passive-ring-resonator-gyro (R-FOG) with a two-coupler ring,” Proc. SPIE3555, 358–362 (1998). [CrossRef]
  4. S. Ezekiel and S. R. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett.30(9), 478–480 (1977). [CrossRef]
  5. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys.57(1), 61–104 (1985). [CrossRef]
  6. H. C. Lefèvre, “Fundamentals of the interferometric fiber-optic gyroscope,” Opt. Rev.4(1), A20–A27 (1997). [CrossRef]
  7. V. Vali and R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt.15(5), 1099–1100 (1976). [CrossRef] [PubMed]
  8. Z. H. Xie, Z. A. Jiang, S. S. Jian, and W. B. Tao, “Theoretical study on resonance characteristics of fiber optic ring resonator in fiber-optical ring resonator gyroscope,” Proc. SPIE3552, 267–271 (1998). [CrossRef]
  9. X. L. Zhang, H. I. Ma, Z. H. Jin, and C. Ding, “Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,” Appl. Opt.45(31), 7961–7965 (2006). [CrossRef] [PubMed]
  10. B. Z. Steinberg, “Rotating photonic crystals: A medium for compact optical gyroscopes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(5), 056621 (2005). [CrossRef] [PubMed]
  11. B. Z. Steinberg and A. Boag, “Aplitting of microcavity degenerate modes in rotating photonic crystals - the miniature optical gyroscopes,” J. Opt. Soc. Am. B24(1), 142–151 (2007). [CrossRef]
  12. F. Zarinetchi, S. P. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Opt. Lett.16(4), 229–231 (1991). [CrossRef] [PubMed]
  13. J. Killpatrick, “The laser gyro,” IEEE Spectr.4(10), 44–55 (1967). [CrossRef]
  14. K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol.15(3), 466–473 (1997). [CrossRef]
  15. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol.4(8), 1071–1089 (1986). [CrossRef]
  16. S.-M. F. Nee, C.-J. Yu, J.-S. Wu, H.-S. Huang, C.-E. Lin, and C. Chou, “Degrees of polarization and coherence of paired linear polarized laser beam by scattering glass plates measured using optical coherent ellipsometer,” Opt. Express16(6), 4286 (2008). [CrossRef] [PubMed]
  17. C. Koch, “Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor,” Appl. Opt.38(13), 2812–2819 (1999). [CrossRef] [PubMed]
  18. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett.31(8), 1085–1087 (2006). [CrossRef] [PubMed]
  19. K. Hotate, N. Okuma, M. Higashiguchi, and N. Niwa, “Rotation detection by optical heterodyne fiber gyro with frequency output,” Opt. Lett.7(7), 331–333 (1982). [CrossRef] [PubMed]
  20. A. D. Kersey, A. C. Lewin, and D. A. Jackson, “Pseudo-heterodyne detection scheme for the fiber gyroscope,” Electron. Lett.20(9), 368–370 (1984). [CrossRef]
  21. H. Koseki and Y. Ohtsuka, “Fiber-optic heterodyne gyroscope using two optical beams with orthogonally polarized components,” Opt. Lett.13(9), 785–787 (1988). [CrossRef] [PubMed]
  22. H. Lefevre, The fiber-optic gyroscope (Artech House, Inc., 1993).
  23. J. Zheng, “Birefringent fiber frequency-modulated continuous-wave Sagnac gyroscope,” Electron. Lett.40(24), 1520–1521 (2004). [CrossRef]
  24. J. Zheng, “Differential birefringent fiber frequency-modulated continuous-wave Sagnac gyroscope,” IEEE Photon. Technol. Lett.17(7), 1498–1500 (2005). [CrossRef]
  25. J. Zheng, “All-fiber single-mode fiber frequency-modulated continuous-wave Sagnac gyroscope,” Opt. Lett.30(1), 17–19 (2005). [CrossRef] [PubMed]
  26. J. Zheng, “Analysis of optical frequency-modulated continuous-wave interference,” Appl. Opt.43(21), 4189–4198 (2004). [CrossRef] [PubMed]
  27. C. J. Yu, C. E. Lin, H. K. Teng, C. C. Tsai, and C. Chou, “Dual-frequency paired polarization phase shifting ellipsometer,” Opt. Commun.282(8), 1516–1520 (2009). [CrossRef]
  28. D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precis. Eng.18(2–3), 161–163 (1996). [CrossRef]
  29. G. A. Pavlath and H. J. Shaw, “Birefringence and polarization effects in fiber gyroscopes,” Appl. Opt.21(10), 1752–1757 (1982). [CrossRef] [PubMed]
  30. E. C. Kintner, “Polarization control in optical-fiber gyroscopes,” Opt. Lett.6(3), 154–156 (1981). [CrossRef] [PubMed]
  31. K. Kai, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, “The development of micro-gyroscope technology,” J. Micromech. Microeng.19(11), 113001 (2009). [CrossRef]
  32. A. V. Tsarev, “New compact polarization rotator in anisotropic LiNbO3 graded-index waveguide,” Opt. Express16(3), 1653–1658 (2008). [CrossRef] [PubMed]
  33. T. Findaldy, B. Chen, and D. Booher, “Single-mode integrated-optical polarizers in LiNbO3 and glass waveguides,” Opt. Lett.8(12), 641–643 (1983). [CrossRef] [PubMed]
  34. K. G. Han, S. Kim, D. H. Kim, J. C. Jo, and S. S. Choi, “Ti:LiNbO3 polarization splitters using an asymmetric branching waveguide,” Opt. Lett.16(14), 1086–1088 (1991). [CrossRef] [PubMed]
  35. W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express15(23), 15500–15506 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited