OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9982–9995

Theory of free space coupling to high-Q whispering gallery modes

Chang-Ling Zou, Fang-Jie Shu, Fang-Wen Sun, Zhao-Jun Gong, Zheng-Fu Han, and Guang-Can Guo  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9982-9995 (2013)
http://dx.doi.org/10.1364/OE.21.009982


View Full Text Article

Enhanced HTML    Acrobat PDF (1711 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Theoretical study of free space coupling to high-Q whispering gallery modes (WGMs) are presented in circular and deformed microcavities. Both analytical solutions and asymptotic formulas are derived for a circular cavity. The coupling efficiencies at different coupling regimes for cylindrical incoming wave are discussed, and the maximum efficiency is estimated for the practical Gaussian beam excitation. In the case of a deformed cavity, the coupling efficiency can be higher than the circular cavity if the excitation beam can match the intrinsic emission which can be tuned by adjusting the degree of deformation. Employing an abstract model of slightly deformed cavity, we find that the asymmetric and peak like line shapes instead of the Lorentz-shape dip are universal in transmission spectra due to multi-wave interference, and the coupling efficiency cannot be estimated from the absolute depth of the dip. Our results provide guidelines for free space coupling in experiments, suggesting that the high-Q asymmetric resonator cavities (ARCs) can be efficiently excited through free space which will stimulate further experiments and applications of WGMs based on free space coupling.

© 2013 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(230.5750) Optical devices : Resonators
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Optical Devices

History
Original Manuscript: February 5, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: April 3, 2013
Published: April 15, 2013

Citation
Chang-Ling Zou, Fang-Jie Shu, Fang-Wen Sun, Zhao-Jun Gong, Zheng-Fu Han, and Guang-Can Guo, "Theory of free space coupling to high-Q whispering gallery modes," Opt. Express 21, 9982-9995 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9982


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Lord Rayleigh, “The problem of the whispering gallery,” Phil. Mag.20, 1001–1004 (1910).
  2. R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys.10, 391–398 (1939). [CrossRef]
  3. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74, 063806 (2006). [CrossRef]
  4. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods5, 591–596 (2008). [CrossRef] [PubMed]
  5. L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev.7, 60–82 (2013). [CrossRef]
  6. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007). [CrossRef]
  7. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature443, 671–674 (2006). [CrossRef] [PubMed]
  8. Y. S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys.5, 489–493 (2009). [CrossRef]
  9. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett.107, 133601 (2011). [CrossRef] [PubMed]
  10. E. Verhagen, S. Deleglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature482, 63–67 (2012). [CrossRef] [PubMed]
  11. G. Mie, “Beiträge zur optik trüber Medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig)330, 377–445 (1908). [CrossRef]
  12. H. Moyses Nussenzveig, “The Science of the Glory,” Sci. Am.306(1), 68–73 (2012) [CrossRef] [PubMed]
  13. S. X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets highlighting the liquid-air interface by laser emission,” Science231, 486–488 (1986) [CrossRef] [PubMed]
  14. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A137, 393–397 (1989). [CrossRef]
  15. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60, 289–291 (1992). [CrossRef]
  16. H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85, 3161–3164 (2000). [CrossRef] [PubMed]
  17. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003). [CrossRef] [PubMed]
  18. M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun.113, 133–143 (1994). [CrossRef]
  19. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to silica-microsphere whispering gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000). [CrossRef] [PubMed]
  20. Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, and W.-D. Zhang, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express19, 5753–5759 (2011). [CrossRef] [PubMed]
  21. F.-J. Shu, C.-L. Zou, and F.-W. Sun, “Perpendicular coupler for whispering-gallery resonators,” Opt. Lett.37, 3123–3125 (2012). [CrossRef] [PubMed]
  22. B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol.17, 704–715 (1999). [CrossRef]
  23. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36, 321–322 (2000). [CrossRef]
  24. C.-L. Zou, Y. Yang, C.-H. Dong, Y.-F. Xiao, X.-W. Wu, Z.-F. Han, and G.-C. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B25, 1895–1898 (2008) [CrossRef]
  25. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency,” Phys. Rev. Lett.93, 233903 (2004). [CrossRef] [PubMed]
  26. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett.98, 213904 (2007). [CrossRef] [PubMed]
  27. C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B42, 215401 (2009). [CrossRef]
  28. B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98, 021116 (2011). [CrossRef]
  29. B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett.100, 021108 (2012). [CrossRef]
  30. A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005). [CrossRef]
  31. C.-H. Dong, C.-L. Zou, J.-M. Cui, Y. Yang, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett.7, 299–301 (2009). [CrossRef]
  32. A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q spoiling in lasing droplets,” Phys. Rev. Lett.75, 2682–2685 (1995). [CrossRef] [PubMed]
  33. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-Power Directional emission from microlasers with chaotic resonators,” Science280, 1556–1564 (1998). [CrossRef] [PubMed]
  34. S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and K. An, “Observation of scarred modes in asymmetrically deformed microcylinder lasers,” Phys. Rev. Lett.88, 033903 (2002). [CrossRef] [PubMed]
  35. S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett.91, 033902(2003). [CrossRef] [PubMed]
  36. Y.-F. Xiao, C.-H. Dong, Z.-F. Han, G.-C. Guo, and Y.-S. Park, “Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses,” Opt. Lett.32, 644–646 (2007). [CrossRef] [PubMed]
  37. T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E67, 015207 (2003). [CrossRef]
  38. W. Fang, A. Yamilov, and H. Cao, “Analysis of high-quality modes in open chaotic microcavities,” Phys. Rev. A72, 023815 (2005). [CrossRef]
  39. M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett.88, 031108 (2006). [CrossRef]
  40. Y.-F. Xiao, C.-H. Dong, C.-L. Zou, Z.-F. Han, L. Yang, and G.-C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett.34, 509–511 (2009). [CrossRef] [PubMed]
  41. J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature385, 45–47 (1997). [CrossRef]
  42. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B21, 923–934 (2004). [CrossRef]
  43. V. A. Podolskiy and E. E. Narimanov, “Chaos-assisted tunneling in dielectric microcavities,” Opt. Lett.30, 474–476 (2005). [CrossRef] [PubMed]
  44. S. Shinohara, T. Fukushima, and T. Harayama, “Light emission patterns from stadium-shaped semiconductor microcavity lasers,” Phys. Rev. A77, 033807 (2008). [CrossRef]
  45. S. B. Lee, J. Yang, S. Moon, J. H. Lee, K. An, J. B. Shim, H. W. Lee, and S. W. Kim, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A75, 011802 (2007). [CrossRef]
  46. J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A73, 031802 (2006). [CrossRef]
  47. J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett.100, 033901 (2008). [CrossRef] [PubMed]
  48. Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A80, 041807 (2009). [CrossRef]
  49. C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflugl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett.94, 251101 (2009). [CrossRef]
  50. S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limacon-shaped semiconductor microcavities,” Phys. Rev. A80, 031801 (2009). [CrossRef]
  51. C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, G.-C. Guo, and Z.-F. Han, “High Q and unidirectional emission whispering gallery modes: principles and design,” IEEE J. Sel. Top. Quantum Electron., In press (2013).
  52. X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater.24, OP260–OP264 (2012). [CrossRef] [PubMed]
  53. Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. USA107, 22407–22412 (2010). [CrossRef] [PubMed]
  54. Y.-S. Park and H. Wang, “Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation,” Opt. Express15, 16471–16477 (2007). [CrossRef] [PubMed]
  55. J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S. W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett.93, 061101 (2008). [CrossRef]
  56. J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, and K. An, “Observation of resonance effects in the pump transmission of a chaotic microcavity,” Opt. Express18, 26141–26148 (2010). [CrossRef] [PubMed]
  57. J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett.104, 243601 (2010). [CrossRef] [PubMed]
  58. D. Q. Chowdhury, S. C. Hill, and Md. Mohiuddin Mazumder, “Quality factors and effective-average modal gain or loss in inhomogeneous spherical resonators: application to two-photon absorption.” IEEE J. Quant. Electron.29, 2553–2561 (1993). [CrossRef]
  59. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-VerlagBerlin Heidelberg, 2008 ).
  60. A. Serpengüzel, S. Arnold, G. Griffel, and J.A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B14, 790–795 (1997). [CrossRef]
  61. H.-B. Lin, J.D. Eversole, A.J. Campillo, and J.P. Barton, “Excitation localization principle for spherical microcavities,” Opt. Lett.23, 1921–1923 (1998). [CrossRef]
  62. S. C. Creagh, “Directional emission from weakly eccentric resonators,” Phys. Rev. Lett.98, 153901 (2007). [CrossRef] [PubMed]
  63. M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express17, 19160–19165 (2009). [CrossRef]
  64. S.-B. Lee, J. Yang, S.-Y. Lee, S. Moon, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Evolution of emission mechanism in deformed microcavities,” International Conference on Transparent Optical Networks, Paper no. Tu.P.16 (2009).
  65. S. Tomsovic and D. Ullmo, “Chaos-assisted tunneling,” Phys. Rev. E50, 145–162 (1994). [CrossRef]
  66. D. A. Steck, W. H. Oskay, and M. G. Raizen, “Observation of chaos-assisted tunneling between islands of stability,” Science293, 274–278 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited