OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9996–10009

Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation

Jeremie Harris, Ping Lu, Hugo Larocque, Yanping Xu, Liang Chen, and Xiaoyi Bao  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9996-10009 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2003 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel fiber-optic refractometer is proposed and demonstrated to achieve temperature- and axial strain-compensated refractive index measurement using highly sensitive outer-cladding modes in a tapered bend-insensitive fiber based Mach-Zehnder interferometer. Peak wavelength shifts associated with different spatial frequency peaks are calibrated to obtain a wavelength-related character matrix λMRI,T,ε for simultaneous measurement of multiple environmental variables. A phase-related character matrix ΦMRI,T,ε is also acquired by direct determination of refractive index, temperature, and axial strain induced phase shifts of the corresponding sensing modes.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:

Original Manuscript: February 19, 2013
Revised Manuscript: March 30, 2013
Manuscript Accepted: April 5, 2013
Published: April 15, 2013

Jeremie Harris, Ping Lu, Hugo Larocque, Yanping Xu, Liang Chen, and Xiaoyi Bao, "Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation," Opt. Express 21, 9996-10009 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Singh, “Refractive index measurement and its applications,” Phys. Scr.65(2), 167–180 (2002). [CrossRef]
  2. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005). [CrossRef] [PubMed]
  3. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett.31(3), 317–319 (2006). [CrossRef] [PubMed]
  4. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett.32(16), 2390–2392 (2007). [CrossRef] [PubMed]
  5. C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express16(22), 17882–17890 (2008). [CrossRef] [PubMed]
  6. T. Guo, H.-Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express17(7), 5736–5742 (2009). [CrossRef] [PubMed]
  7. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett.34(1), 76–78 (2009). [CrossRef] [PubMed]
  8. M. Han, F. W. Guo, and Y. F. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett.35(3), 399–401 (2010). [CrossRef] [PubMed]
  9. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express19(9), 7937–7944 (2011). [CrossRef] [PubMed]
  10. K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel,” Opt. Express19(12), 11769–11779 (2011). [CrossRef] [PubMed]
  11. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett.37(1), 67–69 (2012). [CrossRef] [PubMed]
  12. O. Frazão, L. A. Ferreira, and F. M. Araújo, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Opt.24(3–4), 227–244 (2005).
  13. Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol.21(5), 1320–1327 (2003). [CrossRef]
  14. R. Yang, Y.-S. Yu, C. Chen, Y. Xue, X.-L. Zhang, J.-C. Guo, C. Wang, F. Zhu, B.-L. Zhang, Q.-D. Chen, and H.-B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightwave Technol.30(19), 3126–3132 (2012). [CrossRef]
  15. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009). [CrossRef]
  16. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett.37(12), 2283–2285 (2012). [CrossRef] [PubMed]
  17. H.-J. Kim, O.-J. Kwon, S. B. Lee, and Y.-G. Han, “Polarization-dependent refractometer for discrimination of temperature and ambient refractive index,” Opt. Lett.37(11), 1802–1804 (2012). [CrossRef] [PubMed]
  18. P. Lu, J. Harris, Y. Xu, Y. Lu, L. Chen, and X. Bao, “Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer,” Opt. Lett.37(22), 4567–4569 (2012). [CrossRef] [PubMed]
  19. D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG-LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012). [CrossRef]
  20. Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system,” Electron. Lett.33(24), 2063–2064 (1997). [CrossRef]
  21. H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, “Simultaneous measurement of strain, temperature and vibration frequency using a fiber-optic sensor,” Meas. Sci. Technol.13(8), 1191–1196 (2002). [CrossRef]
  22. Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett.31(12), 1794–1796 (2006). [CrossRef] [PubMed]
  23. C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol.13(2), 98–107 (2007). [CrossRef]
  24. T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008). [CrossRef]
  25. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett.35(16), 2777–2779 (2010). [CrossRef] [PubMed]
  26. L. Men, P. Lu, and Q. Chen, “Intelligent multiparameter sensing with fiber Bragg gratings,” Appl. Phys. Lett.93(7), 071110 (2008). [CrossRef]
  27. S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous Measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010). [CrossRef]
  28. N. J. Alberto, C. A. Marques, J. L. Pinto, and R. N. Nogueira, “Three-parameter optical fiber sensor based on a tilted fiber Bragg grating,” Appl. Opt.49(31), 6085–6091 (2010). [CrossRef]
  29. C. Trono, F. Baldini, M. Brenci, F. Chiavaioli, and M. Mugnaini, “Flow cell for strain- and temperature-compensated refractive index measurements by means of cascaded optical fibre long period and Bragg gratings,” Meas. Sci. Technol.22(7), 075204 (2011). [CrossRef]
  30. M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” J. Lightwave Technol.27(3), 376–382 (2009). [CrossRef]
  31. W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng.36(2), 598–609 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited