OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10422–10429

Near-field analysis of metallic DFB lasers at telecom wavelengths

L. Greusard, D. Costantini, A. Bousseksou, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10422-10429 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We image in near-field the transverse modes of semiconductor distributed feedback (DFB) lasers operating at λ ≈1.3 μm and employing metallic gratings. The active region is based on tensile-strained InGaAlAs quantum wells emitting transverse magnetic polarized light and is coupled via an extremely thin cladding to a nano-patterned gold grating integrated on the device surface. Single mode emission is achieved, which tunes with the grating periodicity. The near-field measurements confirm laser operation on the fundamental transverse mode. Furthermore – together with a laser threshold reduction observed in the DFB lasers – it suggests that the patterning of the top metal contact can be a strategy to reduce the high plasmonic losses in this kind of systems.

© 2013 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 23, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: April 17, 2013
Published: April 22, 2013

L. Greusard, D. Costantini, A. Bousseksou, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, "Near-field analysis of metallic DFB lasers at telecom wavelengths," Opt. Express 21, 10422-10429 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Coleman, A. C. Bryce, and C. Jagadish, Advances in Semiconductor Lasers (Academy, 2012).
  2. J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (The Institution of Electrical Engineers IEE, 1998), Vol. 86.
  3. W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010). [CrossRef]
  4. J. Singh, Semiconductor Optoelectronics (McGraw-Hill, 1995), pp. 527.
  5. M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001). [CrossRef]
  6. W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005). [CrossRef]
  7. M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, “Low-threshold high-quantum efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers,” Appl. Phys. Lett.74(4), 483–485 (1999). [CrossRef]
  8. A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009). [CrossRef]
  9. M. Carras and A. De Rossi, “Photonic modes of metallodielectric periodic waveguides in the mid-infrared spectral range,” Phys. Rev. B74(23), 235120 (2006). [CrossRef]
  10. A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009). [CrossRef] [PubMed]
  11. R. Bachelot, G. Wurtz, and P. Royer, “An application of the apertureless scanning near-field optical microscopy: Imaging a GaAlAs laser diode in operation,” Appl. Phys. Lett.73(23), 3333–3335 (1998). [CrossRef]
  12. G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J. Appl. Phys.5(3), 269–275 (1999). [CrossRef]
  13. N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express15(20), 13227–13235 (2007). [CrossRef] [PubMed]
  14. N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009). [CrossRef] [PubMed]
  15. R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc.202(1), 77–83 (2001). [CrossRef] [PubMed]
  16. D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013). [CrossRef]
  17. J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, “MOVPE growth of AlGaInAs–InP highly tensile-strained MQWs for 1.3 mm low threshold lasers,” J. Cryst. Growth272(1-4), 543–548 (2004). [CrossRef]
  18. D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron.48(1), 73–78 (2012). [CrossRef]
  19. D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012). [CrossRef] [PubMed]
  20. Comsol Multyphysics, www.comsol.com . The simulation is performed in 3D on a single period of the DFB cavity (p = 200nm) imposing Bloch periodic boundary conditions along the propagation direction.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited