OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10430–10439

Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure

Changyou Luo, Jun Guo, Qingkai Wang, Yuanjiang Xiang, and Shuangchun Wen  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10430-10439 (2013)
http://dx.doi.org/10.1364/OE.21.010430


View Full Text Article

Enhanced HTML    Acrobat PDF (2786 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We proposed a scheme to manipulate the Goos-Hänchen shift of a light beam reflected from the depletion-type device via external voltage bias. It is shown that the lateral shift of the reflected probe beam can be easily controlled by adjusting the reverse voltage bias and the incidence angle. Using this scheme, the lateral shift can be tuned from negative to positive, without changing the original structure of the depletion-type device. Numerical calculations further indicate that the influence of structure parameters and light wavelength can be reduced via readjustment of the reverse bias. The proposed structure has the potential application for the integrated electronic devices.

© 2013 OSA

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(130.5990) Integrated optics : Semiconductors
(240.0240) Optics at surfaces : Optics at surfaces
(260.2110) Physical optics : Electromagnetic optics
(260.3060) Physical optics : Infrared

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 29, 2013
Revised Manuscript: March 17, 2013
Manuscript Accepted: April 2, 2013
Published: April 22, 2013

Citation
Changyou Luo, Jun Guo, Qingkai Wang, Yuanjiang Xiang, and Shuangchun Wen, "Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure," Opt. Express 21, 10430-10439 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. R. Horowitz and T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am.61(5), 586 (1971). [CrossRef]
  2. M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am.67(1), 103–107 (1977). [CrossRef]
  3. R. H. Renard, “Total reflection: a new evaluation of the Goos-Hänchen shift,” J. Opt. Soc. Am.54(10), 1190–1196 (1964). [CrossRef]
  4. H. M. Lai, F. C. Cheng, and W. K. Tang, “Goos-Hänchen effect around and off the critical angle,” J. Opt. Soc. Am. A3(4), 550–557 (1986). [CrossRef]
  5. F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett.68(7), 931–933 (1992). [CrossRef] [PubMed]
  6. E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett.70(15), 2281–2284 (1993). [CrossRef] [PubMed]
  7. O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for gaussian optical beams,” Phys. Rev. Lett.75(8), 1511–1513 (1995). [CrossRef] [PubMed]
  8. W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A25(4), 2099–2101 (1982). [CrossRef]
  9. H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett.27(9), 680–682 (2002). [CrossRef] [PubMed]
  10. D. Felbacq, A. Moreau, and R. Smaâli, “Goos-Hänchen effect in the gaps of photonic crystals,” Opt. Lett.28(18), 1633–1635 (2003). [CrossRef] [PubMed]
  11. P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 067603 (2002). [CrossRef] [PubMed]
  12. X. Chen, R. R. Wei, M. Shen, Z. F. Zhang, and C. F. Li, “Bistable and negative lateral shifts of the reflected light beam from Kretschmann configuration with nonlinear left-handed metamaterials,” Appl. Phys. B101(1-2), 283–289 (2010). [CrossRef]
  13. C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett.91(13), 133903 (2003). [CrossRef] [PubMed]
  14. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005). [CrossRef]
  15. S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B40(16), 3211–3219 (2007). [CrossRef]
  16. Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007). [CrossRef] [PubMed]
  17. Y. Chen, X. G. Wei, and B. S. Ham, “Optical properties of an N-type system in Doppler- broadened multilevel atomic media of the rubidium D2 line,” J. Phys. B42(6), 065506 (2009). [CrossRef]
  18. X. Chen, Y. Ban, and C.-F. Li, “Voltage-tunable lateral shifts of ballistic electrons in semiconductor quantum slabs,” J. Appl. Phys.105(9), 093710 (2009). [CrossRef]
  19. X. Chen, X. J. Lu, Y. Wang, and C. F. Li, “Controllable Goos-Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field,” Phys. Rev. B83(19), 195409 (2011). [CrossRef]
  20. T. Hashimoto and T. Yoshino, “Optical heterodyne sensor using the Goos-Hänchen shift,” Opt. Lett.14(17), 913–915 (1989). [CrossRef] [PubMed]
  21. X. Hu, Y. Huang, W. Zhang, D. K. Qing, and J. Peng, “Opposite Goos-Hänchen shifts for transverse-electric and transverse-magnetic beams at the interface associated with single-negative materials,” Opt. Lett.30(8), 899–901 (2005). [CrossRef] [PubMed]
  22. L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A77(2), 023811 (2008). [CrossRef]
  23. S. Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A81(2), 023821 (2010). [CrossRef]
  24. S. Ziauddin and Qamar, “Control of the Goos-Hänchen shift using a duplicated two-level atomic medium,” Phys. Rev. A85(5), 055804 (2012). [CrossRef]
  25. Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hanchen effect,” Appl. Phys. Lett.93(9), 091103 (2008). [CrossRef]
  26. X. Chen, M. Shen, Z. F. Zhang, and C. F. Li, “Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals,” J. Appl. Phys.104(12), 123101 (2008). [CrossRef]
  27. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).
  28. Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, and I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express20(2), 1903–1911 (2012). [CrossRef] [PubMed]
  29. Sadao Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, 2005).
  30. R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996).
  31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  32. N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(44 Pt 2B), 046607 (2002). [CrossRef] [PubMed]
  33. A. M. Steinberg and R. Y. Chiao, “Tunneling delay times in one and two dimensions,” Phys. Rev. A49(5), 3283–3295 (1994). [CrossRef] [PubMed]
  34. L. G. Wang, H. Chen, and S. Y. Zhu, “Wave propagation inside one-dimensional photonic crystals with single-negative materials,” Phys. Lett. A350(5-6), 410–415 (2006). [CrossRef]
  35. C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A76(1), 013811 (2007). [CrossRef]
  36. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett.33(13), 1437–1439 (2008). [CrossRef] [PubMed]
  37. M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics3(6), 337–340 (2009). [CrossRef]
  38. M. Merano, N. Hermosa, A. Aiello, and J. P. Woerdman, “Demonstration of a quasi-scalar angular Goos-Hänchen effect,” Opt. Lett.35(21), 3562–3564 (2010). [CrossRef] [PubMed]
  39. A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys. Rev. A80(6), 061801 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited