OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10440–10453

Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. De Rossi, I. Cestier, and G. Eisenstein  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10440-10453 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2737 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a numerical simulation of narrow band parametric amplification in dispersion engineered photonic crystal waveguides. The waveguides we analyze exhibit group velocity dispersion functions which cross zero twice thereby enabling many interesting pumping schemes. We analyze the case of two pulsed pumps each placed near one of the zero dispersion wavelengths. These configurations are compared to conventional single pump schemes. The two pumps may induce phase matching conditions in the same spectral location enabling to control the gain spectrum. This is used to study the gain and fidelity of 40Gbps NRZ data signals.

© 2013 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: February 12, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 8, 2013
Published: April 22, 2013

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. De Rossi, I. Cestier, and G. Eisenstein, "Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides," Opt. Express 21, 10440-10453 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14, 9444–9450 (2006). [CrossRef] [PubMed]
  2. J. W. Li, T. P. O’Faolain, L. Gomez-Iglesias, A. Krauss, and T. F, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16, 6227–6232 (2008). [CrossRef] [PubMed]
  3. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34, 1072–1074 (2009). [CrossRef] [PubMed]
  4. M. Shinkawa, N. Ishikura, Y. Hama, K. Suzuki, and T. Baba, “Nonlinear enhancement in photonic crystal slow light waveguides fabricated using cmos-compatible process,” Opt. Express19, 22208–22218 (2011). [CrossRef] [PubMed]
  5. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E64, 056604 (2001). [CrossRef]
  6. A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.
  7. M. Santagiustina, C. G. Someda, G. Vadala, S. Combrié, and A. D. Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18, 21024–21029 (2010). [CrossRef] [PubMed]
  8. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18, 7770–7781 (2010). [CrossRef] [PubMed]
  9. I. Cestier, A. Willinger, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, G. Lehoucq, and A. D. Rossi, “Time domain switching / demultiplexing using four wave mixing in gainp photonic crystal waveguides,” Opt. Express19, 6093–6099 (2011). [CrossRef] [PubMed]
  10. I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11db gain at 1550nm based on a slow-light gainp photonic crystal waveguide,” Opt. Lett.37, 3996–3998 (2012). [CrossRef] [PubMed]
  11. P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20, 13108–13114 (2012). [CrossRef] [PubMed]
  12. S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics Journal4, 224–233 (2012). [CrossRef]
  13. S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett.37, 2919–2921 (2012). [CrossRef] [PubMed]
  14. A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Parametric gain in dispersion engineered photonic crystal waveguides,” Opt. Express21, 4995–5004 (2013). [CrossRef] [PubMed]
  15. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express13, 6234–6249 (2005). [CrossRef] [PubMed]
  16. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based onnarrow band fiber parametric amplification,” Opt. Express14, 8540–8545 (2006). [CrossRef] [PubMed]
  17. A. Willinger, E. Shumakher, and G. Eisenstein, “On the roles of polarization and raman-assisted phase matching in narrowband fiber parametric amplifiers,” J. Lightwave Technol.26, 2260–2268 (2008). [CrossRef]
  18. A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett.35, 3198–3200 (2010). [CrossRef] [PubMed]
  19. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  20. A. Willinger and G. Eisenstein, “Split step fourier transform: A comparison between single and multiple envelope formalisms,” J. Lightwave Technol.30, 2988–2994 (2012). [CrossRef]
  21. O. Sinkin, R. Holzlohner, J. Zweck, and C. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol.21, 61–68 (2003). [CrossRef]
  22. P. V. Mamyshev and S. V. Chernikov, “Ultrashort-pulse propagation in optical fibers,” Opt. Lett.15, 1076–1078 (1990). [CrossRef] [PubMed]
  23. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15, 2947–2952 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited