OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10467–10474

Highly polarized all-fiber thulium laser with femtosecond-laser-written fiber Bragg gratings

Christina C. C. Willis, Erik McKee, Pascal Böswetter, Alex Sincore, Jens Thomas, Christian Voigtländer, Ria G. Krämer, Joshua D. Bradford, Lawrence Shah, Stefan Nolte, Andreas Tünnermann, and Martin Richardson  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10467-10474 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1576 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate and characterize a highly linearly polarized (18.8 dB) narrow spectral emission (<80pm) from an all-fiber Tm laser utilizing femtosecond-laser-written fiber Bragg gratings. Thermally-dependent anisotropic birefringence is observed in the FBG transmission, the effects of which enable both the generation and elimination of highly linearly polarized output. To our knowledge, this is the first detailed study of such thermal anisotropic birefringence in femtosecond-written FBGs.

© 2013 OSA

OCIS Codes
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 5, 2013
Manuscript Accepted: April 5, 2013
Published: April 22, 2013

Christina C. C. Willis, Erik McKee, Pascal Böswetter, Alex Sincore, Jens Thomas, Christian Voigtländer, Ria G. Krämer, Joshua D. Bradford, Lawrence Shah, Stefan Nolte, Andreas Tünnermann, and Martin Richardson, "Highly polarized all-fiber thulium laser with femtosecond-laser-written fiber Bragg gratings," Opt. Express 21, 10467-10474 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser LIDAR system,” Appl. Opt.49(4), 562–567 (2010). [CrossRef] [PubMed]
  2. N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express19(16), 14949–14954 (2011). [CrossRef] [PubMed]
  3. N. M. Fried and B. R. Matlaga, “Laser/light applications in urology,” in Lasers in Dermatology and Medicine (Springer, 2012), pp. 561–571.
  4. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun.230(1-3), 197–203 (2004). [CrossRef]
  5. T. S. McComb, M. Richardson, and M. Bass, “High-power fiber lasers and amplifiers,” in Handbook of Optics: Volume V- Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optics (McGraw-Hill, 2009), pp. 25.1–25.33.
  6. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt.49(32), 6236–6242 (2010). [CrossRef] [PubMed]
  7. A. Tünnermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005). [CrossRef]
  8. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  9. C. Lu and Y. Cui, “Fiber Bragg grating spectra in multimode optical fibers,” J. Lightwave Technol.24(1), 598–604 (2006). [CrossRef]
  10. G. P. Frith, B. Samson, A. Carter, J. Farroni, and K. Tankala, “High power (110W), high efficiency (55%) monolithic FBG-based fiber laser operating at 2 µm,” Proc. SPIE6453, 64532B, 64532B-2 (2007). [CrossRef]
  11. Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009). [CrossRef]
  12. Y. Zhang, W. Wang, S. Song, and Z. Wang, “Ultra-narrow linewidth Tm3+-doped fiber laser based on intra-core fiber Bragg gratings,” Laser Phys. Lett.6(10), 723–726 (2009). [CrossRef]
  13. Y. Zhang, W. Wang, R. L. Zhou, S. Song, Y. Tian, and Y. Wang, “Narrow linewidth Tm3+-doped large core fiber laser based on a femtosecond written fiber Bragg grating,” Chin. Phys. Lett.27(7), 074214 (2010). [CrossRef]
  14. Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photon. Technol. Lett.23(7), 417–419 (2011). [CrossRef]
  15. R. A. Sims, Z. A. Roth, C. C. C. Willis, P. Kadwani, T. S. McComb, L. Shah, V. Sudesh, M. Poutous, E. G. Johnson, and M. Richardson, “Spectral narrowing and stabilization of thulium fiber lasers using guided-mode resonance filters,” Opt. Lett.36(5), 737–739 (2011). [CrossRef] [PubMed]
  16. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009). [CrossRef]
  17. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express17(3), 1178–1183 (2009). [CrossRef] [PubMed]
  18. R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000). [CrossRef]
  19. P. Torres, J. F. Botero-Cadavid, F. J. Velez, C. M. B. Cordeiro, and C. J. S. de Matos, “Spectral response of FBG written in specialty single-mode fibers,” AIP Conf. Proc.1055, 65–68 (2008). [CrossRef]
  20. L. J. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, “Study on temperature and stress characteristics of double-clad fiber Bragg gratings,” Proc. SPIE6351, 63513K, 63513K-5 (2006). [CrossRef]
  21. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express20(22), 24103–24114 (2012). [CrossRef] [PubMed]
  22. K. Chah, D. Kinet, M. Wuilpart, P. Mégret, and C. Caucheteur, “Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber,” Opt. Lett.38(4), 594–596 (2013). [CrossRef] [PubMed]
  23. E. Wikszak, J. Thomas, S. Klingebiel, B. Ortaç, J. Limpert, S. Nolte, and A. Tünnermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett.32(18), 2756–2758 (2007). [CrossRef] [PubMed]
  24. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006). [CrossRef]
  25. J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev.6(6), 709–723 (2012). [CrossRef]
  26. J. F. Bayon, M. Douay, P. Bernage, and P. Niay, “Linearly polarized fiber-optic laser,” France Telecom, US Patent 5,561,675 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited